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Abstract: Self-driving vehicles represent one of today's most innovative areas of technological
development, transforming transportation, logistics, and warfare simultaneously. The aim of
this study is to present the technical content of autonomous systems, with a particular focus on
development milestones, key technologies, and the strategies of leading industry players. We
analyze in detail the role of sensors—LiDAR, radar, cameras, and ultrasound—as well as the
importance of sensor fusion and artificial intelligence-driven decision-making. We also discuss
navigation and localization solutions, which are essential for safe transportation. In the field of
civilian use, the main areas of focus are improving transport safety, sustainable urban mobility,
and logistics optimization, while military applications are opening up new horizons in the areas
of logistics convoys, reconnaissance systems, and autonomous combat vehicles. The analysis
emphasizes that the future success of autonomous technologies will be determined by the
combined development of technical advances, regulatory frameworks, and public trust.y
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1 Introduction

Autonomous vehicles (AVs) represent one of the most significant technological
developments of our time, fundamentally reshaping the future of transportation and
mobility. In recent decades, the increasingly close integration of the automotive
industry and information technology has led to the creation of complex systems
capable of continuously sensing the traffic environment, processing data, and
autonomously making decisions and controlling vehicles. The technical background
behind self-driving technologies is multidisciplinary: robotics, artificial intelligence,
sensor technology, remote sensing, and communication networks are all key elements
in the operation of these systems (Thrun, 2010; Anderson et al., 2016). Several factors
are driving these developments. On the one hand, improving road safety and reducing
the number of road accidents is a priority, as a significant proportion of road accidents
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are attributable to human error (Fagnant & Kockelman, 2015). On the other hand,
increasing mobility needs, social expectations for sustainable transport, and the need
to improve logistical efficiency are also key factors. In addition, technology is playing
an increasingly important role not only in civilian transport, but also in military and
industrial applications, for example in the form of autonomous logistics convoys or
reconnaissance vehicles (Lin, 2016). The aim of this study is to analyze the technical
content and development of self-driving vehicles, with a particular focus on key
technologies, manufacturer strategies, the functioning of sensor systems, and civil and
military applications. The structure of the material first reviews the milestones and
technological levels of development, then analyzes the technical components—
sensors, navigation systems, and artificial intelligence. This is followed by a
presentation of the global manufacturing environment and industry players, and the
study concludes with a summary of the opportunities and challenges presented by
civilian and military applications. The aim of the analysis presented is to provide a
comprehensive picture of how self-driving vehicles will shape the future of
transportation and what technical, economic, and social issues will arise during their
introduction..

2 Development and technological milestones

The development of self-driving vehicles is the result of decades of research and
industrial effort, closely linking robotics, computer science, and transportation
engineering. Initial experiments began in the 1980s, when research teams at Carnegie
Mellon University and Mercedes-Benz developed prototypes that were capable of
limited lane tracking and obstacle avoidance (Dickmanns & Zapp, 1987). These early
systems still relied heavily on simplified models of the environment and a combination
of image processing and rule-based algorithms. Development gained new momentum
in the early 2000s with the DARPA Grand Challenge competitions, which aimed to
encourage the development of autonomous vehicle applications in the field. In the first
competition in 2004, none of the vehicles were able to complete the course, but even
then, the integration of sensors, navigation, and control algorithms represented a
significant step forward (Thrun et al., 2006). During the 2005 and 2007 competitions,
the participating vehicles were already capable of traveling tens of kilometers in
complex environments, demonstrating the reality of autonomous driving. Starting in
2010, development focused on the automation levels (0-5) defined by the SAE, which
provide a uniform framework for evaluating the technology. Level 2 systems (partial
automation) were already capable of controlling acceleration and steering
simultaneously, but driver supervision was still required. Level 3 (conditional
automation) and above allow the vehicle to drive autonomously under certain
conditions, while level 5 represents full autonomy without human intervention (SAE
International, 2021). Among the industry milestones, the Google/Waymo project plays
a prominent role, as it was one of the first companies to demonstrate the feasibility of
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self-driving systems in a real-world environment, having already covered millions of
kilometers in road conditions (Waymo, 2020).

Similarly significant is Tesla's Autopilot system, which has made Level 2 driver
assistance features widely available, although its operation is accompanied by safety
concerns and legal disputes (Favard et al., 2017). Uber and other mobility service
providers have also conducted significant experiments in the field of robotaxi
technologies, which, however, have raised serious ethical and regulatory challenges.
Another key element of development is the evolution of the regulatory and legal
environment. While experimental permits and legal frameworks for self-driving tests
have gradually emerged in the United States and Europe, China and other Asian
countries are encouraging development through large-scale government programs (Liu
& Xu, 2021). However, issues of standardization, data security, and liability remain
unresolved. Future developments will be determined by deeper integration of artificial
intelligence and machine learning. Self-driving systems are increasingly capable of
making real-time decisions based on the processing of large data sets and adapting to
changes in the traffic environment in an adaptive manner. Cloud-based infrastructure,
5G communications, and vehicle-to-everything (V2X) technologies will also play a
key role in the coming decade, as they enable cooperation between vehicles and the
optimization of traffic systems (Campolo et al., 2017). The development of self-driving
vehicles has progressed in recent decades from prototype-level experiments to widely
tested systems that are partially available on the commercial market. These
technological milestones not only signal advances in technical capabilities, but also
indicate that autonomous transport is moving closer to mass adoption, although the
timing of this remains dependent on a number of technological, regulatory, and societal
factors.

The development of autonomous vehicles (AVs) has made spectacular progress in
recent years, both in academia and industry. This development covers several key
areas: end-to-end architectures, environment perception and representation, path
planning and decision-making algorithms, and simulation and validation methods.
Foundation models and systems based on historical prediction are also becoming
increasingly prominent. The following summary provides an overview of the most
important technical achievements and challenges based on ten studies published
between 2023 and 2025.

The goal of end-to-end (E2E) systems is to guide the flow of information from raw
sensor data to control commands through a single learning architecture. This
significantly reduces the number of interface errors arising from modular designs and
enables global optimization. Lan and Hao's (2023) review shows how this is being
applied by industry players such as Tesla FSD V12 and Momenta, as well as in
academic research. Common features include the use of Bird's Eye View (BEV)
representation and occupancy networks, which transform data from various sensors
(camera, lidar, radar) into a unified map. The main challenges are handling rare traffic
situations, minimizing computational requirements, and verifying safety. Research
presented at CVPR 2025 further expanded the capabilities of end-to-end models by
integrating historical sensor data. This enables the system to not only infer from the
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current environment, but also take into account past dynamics, resulting in more
accurate predictions and more natural path planning (Bridging Past and Future, 2025).

The development of environmental representation is key to the safe operation of AVs.
2D BEV models are effective but limited in their handling of vertical structures. 3D
occupancy perception offers a new approach that models the environment in voxelized
space. Xu et al. (2024) have detailed how information fusion techniques can be applied
to combine camera, lidar, and radar data. Advanced architectures, such as 3D
convolutional networks and transformer modules, enable the system to create a
probabilistic map of the environment's occupancy. Challenges include high
computational requirements, annotation costs, and sensor limitations (e.g., poor
lighting conditions, occlusion).

Collaborative perception has opened up new perspectives in environmental sensing.
Technologies such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and
Vehicle-to-Everything (V2X) communication enable vehicles to exchange data with
each other and with infrastructure to detect obstacles that their own sensors cannot see.
The 2024 review highlights the importance of open datasets and benchmarks, which
are essential for developing and comparing algorithms (Collaborative Perception
Datasets, 2024).

In the field of path planning, in addition to classic algorithms such as Dijkstra and A*,
sampling-based methods such as RRT and PRM, as well as machine learning-based
approaches, have gained greater prominence. According to a 2024 review by Reda et
al. (2024), the goal of newer systems is to integrate path planning with motion
prediction so that vehicles can anticipate the behavior of other road users (Path
Planning Algorithms, 2024). Waymo's ModeSeq system, developed for the 2024
challenge, presents a multimodal approach to motion prediction. Using a transformer-
based architecture, it generates multiple possible future trajectories whose diversity
and accuracy exceed those of traditional RNN-based models. This capability is
particularly useful in congested urban environments, where multiple future scenarios
must be considered (ModeSeq, 2024). Closely related to this, the BehaviorGPT model
simulates the behavior of traffic agents using generative methods. This allows realistic
scenarios to be created in which autonomous systems can be stress tested. Traffic
simulation is thus not only a validation tool, but also an active area of research
(BehaviorGPT, 2024).

Decision-making in autonomous vehicles is developing along two main lines. Rule-
based and optimization-based methods, such as Markov Decision Processes or search
algorithms, are explainable and deterministic, but have limited adaptability to dynamic
environments. Data-driven methods, such as imitation and reinforcement learning, are
more flexible but require large amounts of data and extensive simulation environments.
The 2023 review article highlights that the three levels of decision-making—strategic,
tactical, and operational—require different approaches (Zhang, Li, & Wang, 2023).
According to a more detailed summary from 2025, the future lies in hybrid systems
that combine the transparency of rule-based methods with the adaptability of data-
driven models (Hu, Zhang, Li, & Zhao, 2025). Validation and verification remain a
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key issue: systems must be tested not only in average situations, but also in rare, safety-
critical scenarios.

The use of foundation models in autonomous vehicle research promises a paradigm
shift. These large-scale, multimodal models are capable of integrating knowledge from
different sources, such as sensor data, traffic situations, and simulations. According to
the review study, the strength of foundation models lies in their adaptability and
generalization, which enable systems to operate robustly even in new environments
(Foundation Models in Autonomous Driving, 2025). The biggest challenges are
computational resource requirements, lack of transparency, and safety verification. It
is clear that self-driving vehicle technology is on an integrated development path. End-
to-end systems simplify the architecture, 3D occupancy perception offers more
accurate environmental models, the integration of path planning and motion prediction
improves safety, while collaborative perception and generative models open up new
possibilities for validation. In decision-making, hybrid approaches and foundation
models are the future, capable of balancing explainability, flexibility, and robustness.
The main challenges in the coming years will be scalability, meeting real-time
requirements, and compliance with safety standards.

3 Technical content and key technologies

The operation of self-driving vehicles is based on complex hardware and software
architectures that enable continuous environmental sensing, data processing, and real-
time decision-making. The most important components of the system include sensors,
algorithms for sensor fusion and data processing, navigation and localization solutions,
and control systems based on artificial intelligence. The goal of self-driving vehicle
sensor systems is to cover the entire spectrum of the traffic environment. One of the
most important sensor types is LIDAR (Light Detection and Ranging), which uses laser
beams to create a highly accurate, three-dimensional map of the vehicle's surroundings.
The advantage of LiIDAR is its high resolution and reliable distance measurement, but
its disadvantages are its high cost and sensitivity to adverse weather conditions
(Svoboda et al., 2016, Ghraizi, 2023). Radar technology is used to determine distance
and speed and is particularly reliable in poor visibility conditions. Ultrasonic sensors
provide support at short range, primarily in parking and low-speed maneuvering
situations. Cameras provide visual information that is key to object recognition, traffic
sign and signal identification, and lane marking detection. The disadvantage of
cameras is that they require high computing power and are sensitive to changes in
lighting conditions (Janai et al., 2020).

Autonomous driving systems do not rely on a single sensor, but use a sensor fusion
approach that combines data from different sensors to increase redundancy and
reliability. Sensor fusion allows the vehicle to create a more accurate and robust
environmental model, reducing errors caused by the weaknesses of individual sensors
(Khaleghi et al., 2013). Based on the processed data, the system is able to detect and
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track objects and predict their movement, which is essential for safe maneuvering.
Accurate positioning is one of the biggest challenges for self-driving vehicles. Global
positioning systems (GPS) alone do not provide sufficient accuracy, so a combination
of HD (high-definition) maps and real-time localization algorithms (e.g., SLAM —
simultaneous localization and mapping) is required. Such systems are capable of
determining the position of a vehicle with centimeter accuracy, while continuously
updating the map of the environment to reflect changing traffic and infrastructure
conditions (Levinson et al., 2007).

The central element of autonomous driving systems is the application of artificial
intelligence (Al) and machine learning. Neural networks, especially convolutional
neural networks (CNNSs), play a key role in image processing, object recognition, and
interpreting traffic situations (Grigorescu et al., 2020). Decision-making modules are
responsible for planning responses to different traffic situations, including route
planning, obstacle avoidance, and safe vehicle control. Real-time control requires
high-performance hardware platforms. Manufacturers such as Nvidia and
Intel/Mobileye have developed special chip architectures capable of processing large
amounts of sensor data and running Al algorithms in real time. This hardware-software
integration enables the responsiveness and safe operation of self-driving vehicles. It
can be concluded that the technological background of self-driving vehicles is
extremely complex and relies on the close cooperation of various sensors, algorithms,
and control systems. The direction of development is determined by the ever-deeper
integration of artificial intelligence, the development of sensor fusion solutions, and
the application of high-precision navigation systems. The synergy of the technical
components ensures that self-driving vehicles will be able to operate safely and
efficiently in both civil and military transport systems in the future.

4 Manufacturers and industry players

The development of self-driving vehicles has led to global industry competition, in
which car manufacturers, technology companies, and startups all play a decisive role.
The market is characterized by the fact that traditional automotive companies are
constantly expanding their research and development activities, while players in the
technology sector are shaping the competitive environment with new approaches and
innovative software solutions. Among traditional car manufacturers, Tesla stands out
with its Autopilot and Full Self-Driving (FSD) systems, which provide the most widely
available, commercially available partial self-driving functions (Shladover, 2018).
Although Tesla's system represents level 2 automation according to the SAE
classification, the company is seeking to gradually expand the range of functions
through continuous software updates. Among European manufacturers, Mercedes-
Benz was the first to receive official approval in Germany in 2021 for the introduction
of a Level 3 autonomous driving system (Drive Pilot) on public roads, which can be
considered a milestone in terms of legal and technological recognition (Mercedes-
Benz, 2021). Volkswagen and BMW are also pursuing ambitious development
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programs focused on shared mobility and robotaxi services. In the US market, General
Motors is developing self-driving vehicles through its subsidiary Cruise, which are
already in test operation in several major cities.

In the technology sector, Waymo is considered one of the market's biggest innovators.
The company, which spun off from Google, was among the first to complete millions
of kilometers of autonomous test drives and currently operates robotaxi services in the
United States (Waymo, 2020). The Baidu Apollo program plays a similar role in China,
with extensive government support and strategic partnerships (Liu & Xu, 2021).
Although Apple officially releases little information, it has been actively testing its
self-driving systems for years, which are linked to the company's development
program known as Project Titan. Nvidia and Intel/Mobileye tend to offer hardware-
and software-based solutions, such as high-performance Al processors and driver
assistance algorithms, which enable OEMs to integrate autonomous systems (Gavrilut
etal., 2020). Startups play a key role in the global technology ecosystem. Aurora, Zoox
(acquired by Amazon), and Nuro are developing specialized self-driving solutions that
focus specifically on freight and urban logistics. These companies are often more agile
and risk-taking than large corporations, enabling them to respond more quickly to new
market demands. Players involved in the development of autonomous vehicles have
also emerged in the military sector. The US Department of Defense (DoD) is funding
several projects targeting self-driving logistics convoys and reconnaissance vehicles
(Defense Science Board, 2016). Israeli and European companies are also actively
working on autonomous vehicles for military use, such as unmanned combat vehicles.
The industry is highly globalized, with American and Chinese players dominating, but
Europe and Japan are also active participants. The competition is not only
technological, but also has economic and geopolitical significance, as self-driving
vehicles are strategic pillars of the mobility infrastructure of the future. According to
market forecasts, the global market for self-driving vehicles could reach hundreds of
billions of dollars by 2030 (MarketsandMarkets, 2020). This industry is not only
transforming car manufacturing, but also logistics, urban transport, the insurance
sector, and the regulatory environment.

5 Possibilities and uses (civilian and military)

The development of self-driving vehicles is not only a technological innovation, but
also offers comprehensive social, economic, and safety opportunities. Autonomous
systems, which are used in both civilian transportation and military applications, have
the potential to transform mobility structures, improve efficiency, and increase safety.
At the same time, both areas present serious challenges and risks that affect the
widespread introduction of the technology.

One of the greatest promises of self-driving vehicles is improved road safety. More
than 90% of road accidents are attributable to human error, so autonomous systems
have the potential to significantly reduce the number of deaths and injuries (National
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Highway Traffic Safety Administration [NHTSA], 2017). Self-driving vehicles are
capable of making the right decisions in situations where human drivers would hesitate
or make mistakes, thanks to the rapid response times provided by sensors and
algorithms. In urban transport, autonomous systems can contribute to the development
of mobility services, for example through the introduction of robotaxi fleets and self-
driving buses. These solutions can reduce traffic congestion, increase the utilization of
transport infrastructure, and support sustainable urban mobility concepts (Litman,
2020). Self-driving logistics vehicles can also revolutionize the freight transport sector
by optimizing route planning, reducing labor requirements, and improving energy
efficiency. Their environmental potential is also of particular importance. Autonomous
vehicles can optimize the entire transport network, reducing fuel consumption and
pollutant emissions. For example, convoys controlled by self-driving systems can use
"platooning” technology, in which multiple vehicles drive closely behind each other,
minimizing air resistance and increasing energy efficiency (Tsugawa, 2016). In
military applications, the development of autonomous vehicles is of strategic
importance. One of the most important areas is the automation of logistics convoys,
which can significantly reduce human casualties on dangerous supply routes.
Autonomous convoys are capable of operating in a coordinated manner with minimal
human supervision, while increasing the mobility and supply security of the army
(Gow & Carpenter, 2016). Reconnaissance and surveillance vehicles also play an
important role in modern warfare. Autonomous systems are capable of real-time data
collection in hostile environments, reducing the risk to human soldiers. In addition, the
development of unmanned combat vehicles and drones is intensifying, and their
deployment on the battlefield could provide a strategic advantage (Singer, 2009).

At the same time, military use raises serious ethical and legal dilemmas. The use of
autonomous weapon systems—especially when they make decisions without human
intervention—is the subject of significant international debate, as it is unclear who
would be responsible for any damage or violations of the laws of war (Lin, 2016).
Particular attention must be paid to cybersecurity in both civilian and military
applications, as the network vulnerability of autonomous systems can pose a serious
security risk. A successful cyberattack can cause not only material damage but also
endanger human lives (Petit & Shladover, 2015). Social acceptance, regulatory
frameworks, and liability issues pose further challenges, all of which determine the
pace of widespread adoption of the technology. The civilian use of self-driving
vehicles can contribute to increased traffic safety, sustainable mobility, and more
efficient logistics processes. In the military sphere, autonomous systems offer strategic
advantages in logistics and reconnaissance, but also raise new ethical and security
dilemmas. A common feature of civilian and military applications is that the
technological advantages can only be realized if appropriate responses to security,
regulatory, and social challenges are found.

Conclusions

Over the past few decades, self-driving vehicle technology has evolved from the level
of research prototypes to the threshold of commercial application. In this study, we
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reviewed the milestones of this development, from early experiments and DARPA
competitions to modern, large-scale robotaxi services. The automation levels defined
by SAE provide a framework for measuring technological advancement and also
indicate further directions for research and development (SAE International, 2021). An
examination of the technical content revealed that the operation of autonomous
vehicles is based on various sensor systems, sensor fusion, high-precision localization,
and artificial intelligence-based decision-making. These components work closely
together to ensure that the vehicle is able to perceive, interpret, and respond in real
time in complex traffic environments. Analysis of industry players has shown that
traditional car manufacturers, technology companies, and agile startups are all present
in the global competition. Tesla, Mercedes-Benz, Waymo, and other key players are
pursuing different strategies, but all of them aim to introduce safe, commercial-grade
autonomous systems. The market has enormous growth potential, which also has
significant economic and geopolitical implications (MarketsandMarkets, 2020).
Civilian applications include improving transport safety, optimizing urban mobility,
and improving the efficiency of logistics processes. Military applications also hold
great potential, particularly in the areas of logistics and reconnaissance. At the same
time, regulatory, ethical, and safety challenges are of paramount importance in both
spheres and must be addressed in order to achieve widespread social acceptance (Lin,
2016). Overall, self-driving vehicles are not just a technological novelty, but are
fundamentally transforming the future of mobility, transport safety, environmental
protection, and warfare. In the coming decades, the key to success will be the
harmonious balance between technological developments, regulatory frameworks, and
social trust.
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