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Abstract: Self-driving vehicles represent one of today's most innovative areas of technological 

development, transforming transportation, logistics, and warfare simultaneously. The aim of 

this study is to present the technical content of autonomous systems, with a particular focus on 

development milestones, key technologies, and the strategies of leading industry players. We 

analyze in detail the role of sensors—LiDAR, radar, cameras, and ultrasound—as well as the 

importance of sensor fusion and artificial intelligence-driven decision-making. We also discuss 

navigation and localization solutions, which are essential for safe transportation. In the field of 

civilian use, the main areas of focus are improving transport safety, sustainable urban mobility, 

and logistics optimization, while military applications are opening up new horizons in the areas 

of logistics convoys, reconnaissance systems, and autonomous combat vehicles. The analysis 

emphasizes that the future success of autonomous technologies will be determined by the 

combined development of technical advances, regulatory frameworks, and public trust.y 
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1 Introduction 

Autonomous vehicles (AVs) represent one of the most significant technological 

developments of our time, fundamentally reshaping the future of transportation and 

mobility. In recent decades, the increasingly close integration of the automotive 

industry and information technology has led to the creation of complex systems 

capable of continuously sensing the traffic environment, processing data, and 

autonomously making decisions and controlling vehicles. The technical background 

behind self-driving technologies is multidisciplinary: robotics, artificial intelligence, 

sensor technology, remote sensing, and communication networks are all key elements 

in the operation of these systems (Thrun, 2010; Anderson et al., 2016). Several factors 

are driving these developments. On the one hand, improving road safety and reducing 

the number of road accidents is a priority, as a significant proportion of road accidents 
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are attributable to human error (Fagnant & Kockelman, 2015). On the other hand, 

increasing mobility needs, social expectations for sustainable transport, and the need 

to improve logistical efficiency are also key factors. In addition, technology is playing 

an increasingly important role not only in civilian transport, but also in military and 

industrial applications, for example in the form of autonomous logistics convoys or 

reconnaissance vehicles (Lin, 2016). The aim of this study is to analyze the technical 

content and development of self-driving vehicles, with a particular focus on key 

technologies, manufacturer strategies, the functioning of sensor systems, and civil and 

military applications. The structure of the material first reviews the milestones and 

technological levels of development, then analyzes the technical components—

sensors, navigation systems, and artificial intelligence. This is followed by a 

presentation of the global manufacturing environment and industry players, and the 

study concludes with a summary of the opportunities and challenges presented by 

civilian and military applications. The aim of the analysis presented is to provide a 

comprehensive picture of how self-driving vehicles will shape the future of 

transportation and what technical, economic, and social issues will arise during their 

introduction.. 

2 Development and technological milestones 

The development of self-driving vehicles is the result of decades of research and 

industrial effort, closely linking robotics, computer science, and transportation 

engineering. Initial experiments began in the 1980s, when research teams at Carnegie 

Mellon University and Mercedes-Benz developed prototypes that were capable of 

limited lane tracking and obstacle avoidance (Dickmanns & Zapp, 1987). These early 

systems still relied heavily on simplified models of the environment and a combination 

of image processing and rule-based algorithms. Development gained new momentum 

in the early 2000s with the DARPA Grand Challenge competitions, which aimed to 

encourage the development of autonomous vehicle applications in the field. In the first 

competition in 2004, none of the vehicles were able to complete the course, but even 

then, the integration of sensors, navigation, and control algorithms represented a 

significant step forward (Thrun et al., 2006). During the 2005 and 2007 competitions, 

the participating vehicles were already capable of traveling tens of kilometers in 

complex environments, demonstrating the reality of autonomous driving. Starting in 

2010, development focused on the automation levels (0–5) defined by the SAE, which 

provide a uniform framework for evaluating the technology. Level 2 systems (partial 

automation) were already capable of controlling acceleration and steering 

simultaneously, but driver supervision was still required. Level 3 (conditional 

automation) and above allow the vehicle to drive autonomously under certain 

conditions, while level 5 represents full autonomy without human intervention (SAE 

International, 2021). Among the industry milestones, the Google/Waymo project plays 

a prominent role, as it was one of the first companies to demonstrate the feasibility of 
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self-driving systems in a real-world environment, having already covered millions of 

kilometers in road conditions (Waymo, 2020).  

Similarly significant is Tesla's Autopilot system, which has made Level 2 driver 

assistance features widely available, although its operation is accompanied by safety 

concerns and legal disputes (Favarò et al., 2017). Uber and other mobility service 

providers have also conducted significant experiments in the field of robotaxi 

technologies, which, however, have raised serious ethical and regulatory challenges. 

Another key element of development is the evolution of the regulatory and legal 

environment. While experimental permits and legal frameworks for self-driving tests 

have gradually emerged in the United States and Europe, China and other Asian 

countries are encouraging development through large-scale government programs (Liu 

& Xu, 2021). However, issues of standardization, data security, and liability remain 

unresolved. Future developments will be determined by deeper integration of artificial 

intelligence and machine learning. Self-driving systems are increasingly capable of 

making real-time decisions based on the processing of large data sets and adapting to 

changes in the traffic environment in an adaptive manner. Cloud-based infrastructure, 

5G communications, and vehicle-to-everything (V2X) technologies will also play a 

key role in the coming decade, as they enable cooperation between vehicles and the 

optimization of traffic systems (Campolo et al., 2017). The development of self-driving 

vehicles has progressed in recent decades from prototype-level experiments to widely 

tested systems that are partially available on the commercial market. These 

technological milestones not only signal advances in technical capabilities, but also 

indicate that autonomous transport is moving closer to mass adoption, although the 

timing of this remains dependent on a number of technological, regulatory, and societal 

factors. 

The development of autonomous vehicles (AVs) has made spectacular progress in 

recent years, both in academia and industry. This development covers several key 

areas: end-to-end architectures, environment perception and representation, path 

planning and decision-making algorithms, and simulation and validation methods. 

Foundation models and systems based on historical prediction are also becoming 

increasingly prominent. The following summary provides an overview of the most 

important technical achievements and challenges based on ten studies published 

between 2023 and 2025.  

The goal of end-to-end (E2E) systems is to guide the flow of information from raw 

sensor data to control commands through a single learning architecture. This 

significantly reduces the number of interface errors arising from modular designs and 

enables global optimization. Lan and Hao's (2023) review shows how this is being 

applied by industry players such as Tesla FSD V12 and Momenta, as well as in 

academic research. Common features include the use of Bird's Eye View (BEV) 

representation and occupancy networks, which transform data from various sensors 

(camera, lidar, radar) into a unified map. The main challenges are handling rare traffic 

situations, minimizing computational requirements, and verifying safety. Research 

presented at CVPR 2025 further expanded the capabilities of end-to-end models by 

integrating historical sensor data. This enables the system to not only infer from the 
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current environment, but also take into account past dynamics, resulting in more 

accurate predictions and more natural path planning (Bridging Past and Future, 2025). 

The development of environmental representation is key to the safe operation of AVs. 

2D BEV models are effective but limited in their handling of vertical structures. 3D 

occupancy perception offers a new approach that models the environment in voxelized 

space. Xu et al. (2024) have detailed how information fusion techniques can be applied 

to combine camera, lidar, and radar data. Advanced architectures, such as 3D 

convolutional networks and transformer modules, enable the system to create a 

probabilistic map of the environment's occupancy. Challenges include high 

computational requirements, annotation costs, and sensor limitations (e.g., poor 

lighting conditions, occlusion). 

Collaborative perception has opened up new perspectives in environmental sensing. 

Technologies such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and 

Vehicle-to-Everything (V2X) communication enable vehicles to exchange data with 

each other and with infrastructure to detect obstacles that their own sensors cannot see. 

The 2024 review highlights the importance of open datasets and benchmarks, which 

are essential for developing and comparing algorithms (Collaborative Perception 

Datasets, 2024). 

In the field of path planning, in addition to classic algorithms such as Dijkstra and A*, 

sampling-based methods such as RRT and PRM, as well as machine learning-based 

approaches, have gained greater prominence. According to a 2024 review by Reda et 

al. (2024), the goal of newer systems is to integrate path planning with motion 

prediction so that vehicles can anticipate the behavior of other road users (Path 

Planning Algorithms, 2024). Waymo's ModeSeq system, developed for the 2024 

challenge, presents a multimodal approach to motion prediction. Using a transformer-

based architecture, it generates multiple possible future trajectories whose diversity 

and accuracy exceed those of traditional RNN-based models. This capability is 

particularly useful in congested urban environments, where multiple future scenarios 

must be considered (ModeSeq, 2024). Closely related to this, the BehaviorGPT model 

simulates the behavior of traffic agents using generative methods. This allows realistic 

scenarios to be created in which autonomous systems can be stress tested. Traffic 

simulation is thus not only a validation tool, but also an active area of research 

(BehaviorGPT, 2024). 

Decision-making in autonomous vehicles is developing along two main lines. Rule-

based and optimization-based methods, such as Markov Decision Processes or search 

algorithms, are explainable and deterministic, but have limited adaptability to dynamic 

environments. Data-driven methods, such as imitation and reinforcement learning, are 

more flexible but require large amounts of data and extensive simulation environments. 

The 2023 review article highlights that the three levels of decision-making—strategic, 

tactical, and operational—require different approaches (Zhang, Li, & Wang, 2023). 

According to a more detailed summary from 2025, the future lies in hybrid systems 

that combine the transparency of rule-based methods with the adaptability of data-

driven models (Hu, Zhang, Li, & Zhao, 2025). Validation and verification remain a 
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key issue: systems must be tested not only in average situations, but also in rare, safety-

critical scenarios. 

The use of foundation models in autonomous vehicle research promises a paradigm 

shift. These large-scale, multimodal models are capable of integrating knowledge from 

different sources, such as sensor data, traffic situations, and simulations. According to 

the review study, the strength of foundation models lies in their adaptability and 

generalization, which enable systems to operate robustly even in new environments 

(Foundation Models in Autonomous Driving, 2025). The biggest challenges are 

computational resource requirements, lack of transparency, and safety verification. It 

is clear that self-driving vehicle technology is on an integrated development path. End-

to-end systems simplify the architecture, 3D occupancy perception offers more 

accurate environmental models, the integration of path planning and motion prediction 

improves safety, while collaborative perception and generative models open up new 

possibilities for validation. In decision-making, hybrid approaches and foundation 

models are the future, capable of balancing explainability, flexibility, and robustness. 

The main challenges in the coming years will be scalability, meeting real-time 

requirements, and compliance with safety standards. 

3 Technical content and key technologies 

The operation of self-driving vehicles is based on complex hardware and software 

architectures that enable continuous environmental sensing, data processing, and real-

time decision-making. The most important components of the system include sensors, 

algorithms for sensor fusion and data processing, navigation and localization solutions, 

and control systems based on artificial intelligence. The goal of self-driving vehicle 

sensor systems is to cover the entire spectrum of the traffic environment. One of the 

most important sensor types is LiDAR (Light Detection and Ranging), which uses laser 

beams to create a highly accurate, three-dimensional map of the vehicle's surroundings. 

The advantage of LiDAR is its high resolution and reliable distance measurement, but 

its disadvantages are its high cost and sensitivity to adverse weather conditions 

(Svoboda et al., 2016, Ghraizi, 2023). Radar technology is used to determine distance 

and speed and is particularly reliable in poor visibility conditions. Ultrasonic sensors 

provide support at short range, primarily in parking and low-speed maneuvering 

situations. Cameras provide visual information that is key to object recognition, traffic 

sign and signal identification, and lane marking detection. The disadvantage of 

cameras is that they require high computing power and are sensitive to changes in 

lighting conditions (Janai et al., 2020). 

Autonomous driving systems do not rely on a single sensor, but use a sensor fusion 

approach that combines data from different sensors to increase redundancy and 

reliability. Sensor fusion allows the vehicle to create a more accurate and robust 

environmental model, reducing errors caused by the weaknesses of individual sensors 

(Khaleghi et al., 2013). Based on the processed data, the system is able to detect and 
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track objects and predict their movement, which is essential for safe maneuvering. 

Accurate positioning is one of the biggest challenges for self-driving vehicles. Global 

positioning systems (GPS) alone do not provide sufficient accuracy, so a combination 

of HD (high-definition) maps and real-time localization algorithms (e.g., SLAM – 

simultaneous localization and mapping) is required. Such systems are capable of 

determining the position of a vehicle with centimeter accuracy, while continuously 

updating the map of the environment to reflect changing traffic and infrastructure 

conditions (Levinson et al., 2007). 

The central element of autonomous driving systems is the application of artificial 

intelligence (AI) and machine learning. Neural networks, especially convolutional 

neural networks (CNNs), play a key role in image processing, object recognition, and 

interpreting traffic situations (Grigorescu et al., 2020). Decision-making modules are 

responsible for planning responses to different traffic situations, including route 

planning, obstacle avoidance, and safe vehicle control. Real-time control requires 

high-performance hardware platforms. Manufacturers such as Nvidia and 

Intel/Mobileye have developed special chip architectures capable of processing large 

amounts of sensor data and running AI algorithms in real time. This hardware-software 

integration enables the responsiveness and safe operation of self-driving vehicles.  It 

can be concluded that the technological background of self-driving vehicles is 

extremely complex and relies on the close cooperation of various sensors, algorithms, 

and control systems. The direction of development is determined by the ever-deeper 

integration of artificial intelligence, the development of sensor fusion solutions, and 

the application of high-precision navigation systems. The synergy of the technical 

components ensures that self-driving vehicles will be able to operate safely and 

efficiently in both civil and military transport systems in the future. 

4 Manufacturers and industry players 

The development of self-driving vehicles has led to global industry competition, in 

which car manufacturers, technology companies, and startups all play a decisive role. 

The market is characterized by the fact that traditional automotive companies are 

constantly expanding their research and development activities, while players in the 

technology sector are shaping the competitive environment with new approaches and 

innovative software solutions. Among traditional car manufacturers, Tesla stands out 

with its Autopilot and Full Self-Driving (FSD) systems, which provide the most widely 

available, commercially available partial self-driving functions (Shladover, 2018). 

Although Tesla's system represents level 2 automation according to the SAE 

classification, the company is seeking to gradually expand the range of functions 

through continuous software updates. Among European manufacturers, Mercedes-

Benz was the first to receive official approval in Germany in 2021 for the introduction 

of a Level 3 autonomous driving system (Drive Pilot) on public roads, which can be 

considered a milestone in terms of legal and technological recognition (Mercedes-

Benz, 2021). Volkswagen and BMW are also pursuing ambitious development 
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programs focused on shared mobility and robotaxi services. In the US market, General 

Motors is developing self-driving vehicles through its subsidiary Cruise, which are 

already in test operation in several major cities. 

In the technology sector, Waymo is considered one of the market's biggest innovators. 

The company, which spun off from Google, was among the first to complete millions 

of kilometers of autonomous test drives and currently operates robotaxi services in the 

United States (Waymo, 2020). The Baidu Apollo program plays a similar role in China, 

with extensive government support and strategic partnerships (Liu & Xu, 2021). 

Although Apple officially releases little information, it has been actively testing its 

self-driving systems for years, which are linked to the company's development 

program known as Project Titan. Nvidia and Intel/Mobileye tend to offer hardware- 

and software-based solutions, such as high-performance AI processors and driver 

assistance algorithms, which enable OEMs to integrate autonomous systems (Gavrilut 

et al., 2020). Startups play a key role in the global technology ecosystem. Aurora, Zoox 

(acquired by Amazon), and Nuro are developing specialized self-driving solutions that 

focus specifically on freight and urban logistics. These companies are often more agile 

and risk-taking than large corporations, enabling them to respond more quickly to new 

market demands. Players involved in the development of autonomous vehicles have 

also emerged in the military sector. The US Department of Defense (DoD) is funding 

several projects targeting self-driving logistics convoys and reconnaissance vehicles 

(Defense Science Board, 2016). Israeli and European companies are also actively 

working on autonomous vehicles for military use, such as unmanned combat vehicles. 

The industry is highly globalized, with American and Chinese players dominating, but 

Europe and Japan are also active participants. The competition is not only 

technological, but also has economic and geopolitical significance, as self-driving 

vehicles are strategic pillars of the mobility infrastructure of the future. According to 

market forecasts, the global market for self-driving vehicles could reach hundreds of 

billions of dollars by 2030 (MarketsandMarkets, 2020). This industry is not only 

transforming car manufacturing, but also logistics, urban transport, the insurance 

sector, and the regulatory environment. 

5 Possibilities and uses (civilian and military) 

The development of self-driving vehicles is not only a technological innovation, but 

also offers comprehensive social, economic, and safety opportunities. Autonomous 

systems, which are used in both civilian transportation and military applications, have 

the potential to transform mobility structures, improve efficiency, and increase safety. 

At the same time, both areas present serious challenges and risks that affect the 

widespread introduction of the technology. 

One of the greatest promises of self-driving vehicles is improved road safety. More 

than 90% of road accidents are attributable to human error, so autonomous systems 

have the potential to significantly reduce the number of deaths and injuries (National 
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Highway Traffic Safety Administration [NHTSA], 2017). Self-driving vehicles are 

capable of making the right decisions in situations where human drivers would hesitate 

or make mistakes, thanks to the rapid response times provided by sensors and 

algorithms. In urban transport, autonomous systems can contribute to the development 

of mobility services, for example through the introduction of robotaxi fleets and self-

driving buses. These solutions can reduce traffic congestion, increase the utilization of 

transport infrastructure, and support sustainable urban mobility concepts (Litman, 

2020). Self-driving logistics vehicles can also revolutionize the freight transport sector 

by optimizing route planning, reducing labor requirements, and improving energy 

efficiency. Their environmental potential is also of particular importance. Autonomous 

vehicles can optimize the entire transport network, reducing fuel consumption and 

pollutant emissions. For example, convoys controlled by self-driving systems can use 

"platooning" technology, in which multiple vehicles drive closely behind each other, 

minimizing air resistance and increasing energy efficiency (Tsugawa, 2016). In 

military applications, the development of autonomous vehicles is of strategic 

importance. One of the most important areas is the automation of logistics convoys, 

which can significantly reduce human casualties on dangerous supply routes. 

Autonomous convoys are capable of operating in a coordinated manner with minimal 

human supervision, while increasing the mobility and supply security of the army 

(Gow & Carpenter, 2016). Reconnaissance and surveillance vehicles also play an 

important role in modern warfare. Autonomous systems are capable of real-time data 

collection in hostile environments, reducing the risk to human soldiers. In addition, the 

development of unmanned combat vehicles and drones is intensifying, and their 

deployment on the battlefield could provide a strategic advantage (Singer, 2009). 

At the same time, military use raises serious ethical and legal dilemmas. The use of 

autonomous weapon systems—especially when they make decisions without human 

intervention—is the subject of significant international debate, as it is unclear who 

would be responsible for any damage or violations of the laws of war (Lin, 2016). 

Particular attention must be paid to cybersecurity in both civilian and military 

applications, as the network vulnerability of autonomous systems can pose a serious 

security risk. A successful cyberattack can cause not only material damage but also 

endanger human lives (Petit & Shladover, 2015). Social acceptance, regulatory 

frameworks, and liability issues pose further challenges, all of which determine the 

pace of widespread adoption of the technology. The civilian use of self-driving 

vehicles can contribute to increased traffic safety, sustainable mobility, and more 

efficient logistics processes. In the military sphere, autonomous systems offer strategic 

advantages in logistics and reconnaissance, but also raise new ethical and security 

dilemmas. A common feature of civilian and military applications is that the 

technological advantages can only be realized if appropriate responses to security, 

regulatory, and social challenges are found. 

 

Conclusions 

Over the past few decades, self-driving vehicle technology has evolved from the level 

of research prototypes to the threshold of commercial application. In this study, we 
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reviewed the milestones of this development, from early experiments and DARPA 

competitions to modern, large-scale robotaxi services. The automation levels defined 

by SAE provide a framework for measuring technological advancement and also 

indicate further directions for research and development (SAE International, 2021). An 

examination of the technical content revealed that the operation of autonomous 

vehicles is based on various sensor systems, sensor fusion, high-precision localization, 

and artificial intelligence-based decision-making. These components work closely 

together to ensure that the vehicle is able to perceive, interpret, and respond in real 

time in complex traffic environments. Analysis of industry players has shown that 

traditional car manufacturers, technology companies, and agile startups are all present 

in the global competition. Tesla, Mercedes-Benz, Waymo, and other key players are 

pursuing different strategies, but all of them aim to introduce safe, commercial-grade 

autonomous systems. The market has enormous growth potential, which also has 

significant economic and geopolitical implications (MarketsandMarkets, 2020). 

Civilian applications include improving transport safety, optimizing urban mobility, 

and improving the efficiency of logistics processes. Military applications also hold 

great potential, particularly in the areas of logistics and reconnaissance. At the same 

time, regulatory, ethical, and safety challenges are of paramount importance in both 

spheres and must be addressed in order to achieve widespread social acceptance (Lin, 

2016). Overall, self-driving vehicles are not just a technological novelty, but are 

fundamentally transforming the future of mobility, transport safety, environmental 

protection, and warfare. In the coming decades, the key to success will be the 

harmonious balance between technological developments, regulatory frameworks, and 

social trust. 
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