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Abstract: Efficient water resource management is paramount for sustainable agriculture amidst 

increasing global population and climate variability. This paper establishes a novel theoretical 

framework for an AI-driven Decision Support System (DSS) specifically designed to enhance 

precision irrigation practices. The primary aim of this investigation is to leverage this 

framework to develop a deep learning AI model capable of accurately predicting and precisely 

detecting water stress sections within crops of interest, thereby enabling highly targeted and 

efficient water applications. The proposed framework integrates multiple heterogeneous data 

sources to construct a comprehensive spatio-temporal understanding of crop water status. It 

includes Earth Observation (EO) data from Sentinel-2 B satellites, specifically utilizing 

vegetation indices such as Normalized Difference Vegetation Index (NDVI) for assessing 

vegetation health and Normalized Difference Moisture Index (NDMI) for soil water content. 

Complementing this, high-resolution in-situ measurements are collected by IoT sensors (e.g., 

IoT-NPK for soil moisture, NPK levels, temperature, and pH) mounted on mobile robot 

platforms like PlatypOUs, providing essential ground truth validation. Furthermore, 

meteorological data, i.e., precipitation, air, and soil humidity, is integrated to provide crucial 

environmental context and predictive insights. This paper outlines a methodology for developing 

a Recurrent Neural Network (RNN) architecture based on a U-Net topology that will effectively 

encode features from these integrated data streams. The model incorporates multiple 

convolution layers for efficient spatial feature extraction, Long Short-Term Memory (LSTM) 

layers to capture temporal dependencies, and attention layers to focus on the most critical 

features for prediction. The ultimate output is a newly generated image representing the 

predicted spatial distribution of water stress across the field of interest, allowing pixel-based 

classification for targeted irrigation recommendations. This foundational investigation, 

including initial data analysis and feature engineering, paves the way towards optimized water 

use, significantly improving agricultural productivity and enhancing resource conservation. 
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Future research will focus on this advanced AI model's rigorous development, training, and 

validation. 

Index Terms: Water sustainability, Precision Farming, Artificial Intelligence, Human operator 

support, Mobile Robot Platforms, IoT. 

1 Introduction 

The increasing global population and changing climate patterns place unprecedented 

demands on water resources, particularly in the agricultural sector, which accounts for 

a significant portion of freshwater consumption [1]. Thus, efficient management of 

water resources is crucial to ensure sustainable agricultural productivity and global 

food security [2]. Traditional irrigation practices often lead to water wastage due to 

inefficient distribution and a lack of precise information on crop water requirements 

[3]. Therefore, there is  a growing need for innovative approaches to  optimize water 

use, improve crop yields, and minimize environmental impact. 

The health and productivity of crops are intricately linked to the availability of essential 

nutrients, including nitrates (N), phosphates (P), and potassium (K) [4]. These macro-

nutrients play vital roles in various physiological processes such as photosynthesis, 

nutrient transport, and root development [5]. Monitoring their levels in the soil is 

crucial to optimize fertilization and irrigation strategies [6]. In addition, Earth 

Observation (EO) systems provide valuable data for land cover classification [7], [8], 

which is essential to understand the spatial distribution of different types of vegetation 

and their water requirements. Classifying land cover makes it possible to identify areas 

with similar hydrological characteristics and tailor irrigation management accordingly. 

Satellite sensors offer a powerful means to assess vegetation conditions and water 

stress [9]. The Normalized Difference Vegetation Index (NDVI) is a widely used index 

that measures the greenness of vegetation and is related to photosynthetic activity and 

biomass [10]. On the other hand, the Normalized Difference Moisture Index (NDMI) 

is sensitive to the water content of vegetation and soil [7]. These indices, derived from 

multi-spectral imagery acquired by satellites, i.e., Sentinel-2 A/B, provide valuable 

information on crop water status's spatial and temporal variability [8], [11]. 

Although EO provides a broad overview, in situ data collection is essential to capture 

variations at higher resolution and validate satellite-based information [9]. For this 

reason, mobile robot platforms equipped with environmental sensors offer a flexible 

and efficient solution to collect real-time data on soil conditions [12], [13]. These 

robots can measure crucial parameters, e.g., soil moisture and temperature, at specific 

locations within the field to be studied [14], providing valuable data to calibrate and 

validate models of water stress. 
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This paper is part of the Water Resource Efficiency Network (WREN) project, which 

aims to enhance the spatial and temporal resolution of drought monitoring and improve 

site-specific management support for optimal irrigation and crop yield, combining 

remote sensing and local data, leveraging EO methods and AI techniques [8]. This 

paper proposes a conceptual framework for an AI-driven decision support system 

(DSS), which integrates EO data, in-situ measurements from IoT sensors and mobile 

robot platforms, and advanced machine learning techniques to predict crop water stress 

and optimize irrigation scheduling. Based on the U-Net model, the proposed system 

will leverage a Recurrent Neural Network (RNN) architecture to effectively encode 

relevant features from satellite images and in-situ data. This approach aims to provide 

accurate, site-specific irrigation recommendations, enhance water use efficiency, 

improve crop health, and promote sustainable farming practices. 

2 Background and Related Work 

2.1 Earth Observation and Precision Farming 

Earth Observation (EO) has become an indispensable tool in modern agriculture, 

offering a wide range of applications for precision farming ,[3], [9]. EO data from 

satellite and aerial platforms provide valuable information on various crop and 

environmental parameters, enabling farmers to make informed decisions and optimize 

their management practices. 

The research of Ferreira et. al. [15] suggested that the combination of Earth observation 

and machine learning was successfully applied in several different fields across the 

world. The implications of EO in precision farming are not excluded, as this data can 

be used for multiple purposes e.g., crop monitoring, water management, nutrient 

management, pest and disease management, yield prediction, estimating crop yields 

before harvest; and land cover classification [7], [3], [11]. 

Consequently, by providing timely and accurate information, EO helps farmers to 

improve input use efficiency, reduce environmental impact, and enhance crop 

productivity [16]. 

Vegetation indices (VIs) are quantitative measures derived from EO data that provide 

information about the biophysical properties of a field to be studied, as they are widely 

used to assess crop health, monitor growth, and detect stress [17]. The Normalized 

Difference Vegetation Index (NDVI) is used to measure the difference between near-

infrared (NIR) and red light reflected by vegetation, as healthy vegetation reflects more 

NIR light and absorbs more red light, resulting in high NDVI values, while low NDVI 

values indicate sparse or stressed vegetation [18]. 
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On the other hand, the Normalized Difference Moisture Index (NDMI) is another 

important VI sensitive to vegetation water content. It uses the difference between NIR 

and shortwave infrared (SWIR) reflectance. SWIR is sensitive to water in plant 

canopies, so NDMI can help estimate crop water status and detect water stress [7]. 

Other VIs, such as the Enhanced Vegetation Index (EVI) and the Soil-Adjusted 

Vegetation Index (SAVI), are also used in agriculture to account for atmospheric 

effects and soil background, respectively, making them a good option to extract 

relevant characteristics to estimate crop water content [17]. 

Previous research has demonstrated the potential of EO and Artificial Intelligence (AI) 

to improve agricultural water management. For instance, [7] found a correlation above 

90% between soil moisture values estimated from satellite images (using NDMI) and 

ground-truth moisture lectures based on the OPTRAM model, highlighting the 

effectiveness of EO in capturing soil moisture variations. 

2.2 Mobile Robot Platforms in Precision Farming 

In addition to EO data, real-time information on soil conditions is crucial for precision 

farming [8]. Soil parameters such as N, P, K levels, temperature, moisture, and pH can 

vary significantly within a field, affecting crop growth and yield [6], [4]. 

Sensors with ion-selective electrodes (ISEs) are devices that measure the activity of 

specific ions in a solution [19]. For this reason, this method can be used to determine 

the concentration of N, P, and K ions in the soil, providing a direct measure of nutrient 

availability to plants [20]. These electrodes are designed to selectively respond to their 

target ions, generating a potential difference proportional to the ion activity, which can 

then be converted into a measurable concentration using the Nernst equation 1 [19]. 

  (1) 

where: 

E is the measured potential, E0 is the standard electrode potential, R is the ideal gas 

constant, T is the absolute temperature, n is the charge of the ion, F is the Faraday 

constant, ai is the activity of the ion. 

These sensors can be incorporated into Unmanned Vehicles (UV) as they can collect 

relevant soil information [13], providing a comprehensive understanding of its 

conditions throughout the field of study to optimize and validate water distribution 

models, fertilizer usage, irrigation scheduling, and other management practices. 

Mobile robot platforms are increasingly being adopted in precision farming for various 

tasks, including in situ data collection [14]. As UVs can navigate through the field, this 

technology can significantly reduce the workload of farmers or researchers in several 

ways, being one of the motivations of this research. 
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2.2.1 The PlatypOUs Robot Platform.  

The PlatypOUs robot (shown in Figure 1) is a differential drive mobile platform with 

two wheels on the front and a caster wheel on the back. Created by the Special College 

of Robotics of Obuda University [21]. The control system is based on the open-source 

ROS robotics middleware. The version used is Noetic [22], where a node has been 

created to receive a velocity input in a twist format to control the robot’s position. 

The robot has environmental sensors, including an IoT-NPK sensor, which measures 

soil moisture, NPK levels, temperature, and pH. Mobile robots like PlatypOUS 

streamlines the data collection process, improving the efficiency and accuracy of in 

situ measurements, which are crucial to generate accurate land cover maps, calibrate 

EO data, and train AI models to predict crop water stress. 

2.3 AI in Precision Farming 

AI is rapidly transforming the agricultural sector [2], with significant advances in water 

stress estimation and precision farming [3]. Machine learning algorithms, including 

deep learning techniques, are increasingly used to analyze complex agricultural data 

from various sources, including EO imagery, meteorological data, and in situ sensor 

measurements [5]. 

In water stress estimation, AI models are being developed to predict crop water 

requirements and detect drought conditions [23]. These models can identify patterns 

and relationships between different variables, such as vegetation indices, soil moisture, 

and weather parameters, to provide accurate and timely information on crop water 

status [24]. 

Artificial intelligence plays a crucial role in precision farming, allowing the 

development of site-specific management strategies [25]. Machine learning algorithms 

can be used to analyze data on soil properties, crop health, and environmental 

conditions to optimize the application of inputs such as water, fertilizers, and pesticides 

[23]. It  increases efficiency, reduces costs, and minimizes environmental impact [16]. 
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Figure 1 

CAD representation of the PlatypOUs mobile robot platform 

3 Methodology 

The proposed methodology aims to analyze and integrate information from multiple 

data sources i.e. EO data (e.g. NDMI, NDVI), in-situ soil features’ measurements, and 

weather stations information to train an AI in order to take part in a Decision Support 

System (DSS) for precision irrigation. 

3.1 Field of Study 

The land selected to be the subject of analysis is located in the region of Esztergom - 

Hungary (Csolnok), as shown in Figure 2. 

3.2 Dataset acquisition and Pre-processing 

3.2.1. Earth Observation Data. Multi-spectral images will be acquired from Sentinel-2 

A/B satellites between January 2022 and May 2025. These images will be pre-selected 

based on the cloud cover percentage, where a threshold of 20% was set to discriminate 

relevant images considering the location of the field to be analyzed. Furthermore, 

vegetation indices, i.e. NDMI and NDVI will be calculated using equations 2 and 3, 
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respectively, based on the frequencies Near Infrared (NIR), Short Wave Infrared 

(SWIR), and Red (RED) captured by the satellite sensors. 

  (2) 

  (3) 

 

Figure 2 

Field of Study 

As stated in section 2, Wojtaszek et. al. found a correlation above 90% between soil 

moisture values estimated from satellite images (using NDMI) and ground-truth 

moisture data [10]. These results strongly suggest that satellite imagery, more 

specifically, the NDMI and NDVI indexes, are ideal for providing relevant features to 

a deep learning model capable of predicting the state of water stress of the crop of 

interest [5], [14]. 

On the other hand, a shape based on the land geometry and location will be applied as 

a mask to create fix-sized images that contain only the information of the Field of 

Interest (FoI) to reduce noise and limit the amount of information that the deep learning 

model will process, therefore reducing the processing time [11], [15]. 

3.2.2 In-situ Data 

Real-time data on soil conditions will be collected using IoT sensors mounted on a 

mobile robot platform. For research and development purposes, the PlatypOUS 

platform has been used to test the system integration, as the robot is equipped with an 

IoT-NPK sensor (see Figure 3) to measure soil moisture, NPK levels, temperature, and 

pH. 
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Once the data has been collected, an Inverse Distance Weight interpolation method 

will be applied to estimate the soil’s moisture content across the entire FOI, to be used 

during the training and validation process of the deep learning model development 

[26]. 

3.2.3 Meteorological data 

Weather data (i.e. precipitation, air and soil temperature, relative humidity, and soil 

moisture at different depths) will be collected from 121 available meteorological 

stations distributed throughout the country, as can be noticed in red dots inside the map 

of Figure 4. 

The mentioned information is collected and stored in a csv file where each row 

contains the daily average of each variable sorted by station ID, opening the possibility 

of training a Random Forest Regressor model to predict future values on each one of 

the available stations. 

The resultant dataset will be divided into two sub-sets: features (X) and targets (y). 

Both include all four selected variables, with the aim of predicting all variables based 

on their interdependence. 

 

Figure 3 

 N-P-K Sensor 
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Figure 4 

Spatial distribution of the available weather station across Hungary 

Furthermore, the datasets will be normalized using the library StandardScaler [27] to 

normalize all features and target values between -1 and 1, ensuring they are on 

comparable scales to improve the model’s performance. 

The results of the Random Forest model predictions will be evaluated by comparing 

them with actual weather data, where metrics such as Mean Squared Error (MSE) and 

Root Mean Squared Error (RMSE) will assess the model accuracy [28]. 

3.3 Feature Engineering and Variable Selection 

Random forests are known for their robustness and ability to handle large datasets with 

numerous variables. In this methodology, the model is hyper-parameterized using the 

library GridSearchCV to optimize performance, ensuring accurate predictions [29]. 

A set of four variables, i.e. air temperature, soil temperature, soil moisture, and 

relative humidity, was selected to be part of the prediction validation process; selection 

that was performed based on the author’s considerations. 

On the other hand, one of the features that Random Forest models offer is applied in 

this study where apart of a forecasting regression process, a relevance analysis will be 

performed to 
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Figure 5 

Satellite image pre-processing result 

determine which of the preselected variables is the most relevant in weather forecasting 

[30], to be included as features in the proposed deep learning model. 

4 Results 

4.1 EO - Satellite images 

Figure 5 shows two instances of the satellite image pre-processing, where A and B are 

the NDMI calculated per pixel before the region of interest is cut out while maintaining 

the geographic coordinates, and the respective normalized value, where the regions 

colored blue are the sections presenting more water stress. 

4.2 Forecasted Variables 

After training the Random Forest model based on the found hyper-parameters, it was 

used to predict the four selected variables for the test dataset (y). Predictions were 

scaled back to their original units using the inverse transform of the library 

StandardScaler [27]. The results were evaluated for each target variable, and the root 

mean square error (RMSE) was calculated as a measure of the accuracy of the 

prediction using equation 4. 
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  (4) 

where yi and yˆi are the real and the predicted values, respectively, and n is the total 

number of trials. 

 

RMSE Results 

Variable Name RMSE (%) 

Air Temperature 1.25 

Relative humidity 3.45 

Soil Temperature 1.75 

Soil Moisture 4.02 

Table 1 

Calculated rmse for the selected variables 

Figure 6 

Predicted vs. Real values of one of the selected variables (Air Temperature) 

Table 1 displays the resultant RMSE for each of the analyzed variables. In contrast, 

figure 6 compares the predicted and real data for the variable Air Temperature. 
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4.3 Variable Relevance Analysis 

As section 3 mentioned, a Random Forest model was implemented to analyze the 

relevance of the available variables in terms of weather forecasting. As a result of the 

feature relevance analysis, it was identified that air and soil temperature were the most 

significant while predicting weather patterns from the selected dataset, as shown in 

Figure 7, underscoring their importance in agricultural modeling and suggesting that 

these variables should be included as features for the proposed AI model. 

4.4 Discussion 

The presented paper proposes a system framework to develop a DSS based on deep 

learning methods. It is RNNs that include convolution layers to encode relevant 

information, LSTM layers to retain time-relevant features into account to generate a 

prediction based on the 

Figure 7 

Results of the feature Relevance analysis 

output of an attention layer before it is decoded to obtain a generated image 

representing the predicted state of the water stress distribution on the field of interest 

to be studied, providing the availability to suggest irrigation in the location where it is 

required, reducing the waste of the water resource during the irrigation process as it 

will be delimited to the area where it is required to prevent drought. 

Although this proposal includes multiple relevant features from different data sources, 

it is notable that there is more information that should be considered in the DSS, as 
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underground water deposits and elevation levels, land cover maps, in order to obtain a 

water flow approximation that could prevent drought in crops. 

5 Further Developments 

5.1 AI Model Development and Validation 

A Recurrent Neural Network (RNN) model will be developed to predict crop water 

stress based on the extracted features. The model will be trained using historical data 

and validated using independent data sets. The following Figure 8 shows a 

representation of the topology of the proposed model, Where can be notable the 

intention to use multiple convolution layers to encode the features presented in the 

post-processed satellite images while including the most relevant variables from the 

weather stations to posteriorly integrate a Long Short Term Memory layer (LSTM) to 

capture the relevance of the encoded data, to continue with an Attention layer to 

highlight the relevance of the most important features to be considered before a set of 

inverse convolutions are decoding the predicted information into a newly generated 

image based on the predicted values. 

 

 

Figure 8. 

Topological representation of the proposed Deep learning model 
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Figure 9 

Example of the pixel-based classification 

5.2 Decision Support System Development 

A decision support system (DSS) will be developed to provide irrigation 

recommendations based on the model predictions. 

The DSS will integrate data visualization tools and a user-friendly interface where the 

farmer will be notified where irrigation is required after applying a pixel-based 

classification, as the example in Figure 9 shows, where the range to determine the 

water-stressed sections was selected for demonstration purposes. 

 

Conclusion 

This paper successfully establishes a robust theoretical framework for an AI-driven 

Decision Support System (DSS) aimed at highly precise water stress detection and 

optimized irrigation management in agricultural settings. The feasibility and potential 

of this framework are underpinned by several key findings derived from the 

investigation. 

Firstly, the research demonstrates the efficacy of integrating diverse, multi-modal data 

streams for a holistic understanding of crop water status. It This includes Earth 

Observation (EO) data, specifically the Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Moisture Index (NDMI) derived from Sentinel-2 

A/B satellites, which provide crucial insights into vegetation health and soil water 

content. Secondly, integrating high-resolution in-situ measurements collected by IoT-

NPK sensors on mobile robot platforms like PlatypOUs, provides essential ground 

truth for soil moisture, NPK levels, temperature, and pH. Complementing these, 

comprehensive meteorological data from a network of weather stations offers critical 

environmental context and predictive insights. The successful preliminary analysis, 

including the validation of meteorological data forecasting with low RMSE values 

(e.g., 1.25% for air temperature, 1.75% for soil temperature) suggests that variables 
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such as air and soil temperature and humidity should be considered as features to take 

into account while training a deep learning model. On the other hand, satellite images 

can provide important information related to vegetation’s health and soil water content 

by calculating the indexes NDVI and NDMI, respectively. The proposed deep learning 

topology includes convolution layers to encode information, an LSTM and Attention 

layer to perform a prediction, and inverse convolutions to generate an image based on 

the predicted features. 

References 

[1] S. N. Ngigi, Climate change adaptation strategies: water resources management 

options for smallholder farming systems in sub-Saharan Africa. New York, 

NY: The Earth Institute at Columbia University, 2009. 

[2] A. L. Srivastav, R. Dhyani, M. Ranjan, S. Madhav, and M. Sillanpa¨a, 

“Climate-resilient strategies for sustainable¨ management of water resources 

and agriculture,” Environmental Science and Pollution Research, vol. 28, no. 

31, pp. 41576–41595, 2021. 

[3] N. S. Grigg, Water Resources Management: Principles, Methods, and Tools.

 John Wiley & Sons, 2023. 

[4] K. Misbah, A. Laamrani, K. Khechba, D. Dhiba, and A. Chehbouni, “Multi-

sensors remote sensing applications for assessing, monitoring, and mapping 

npk content in soil and crops in african agricultural land,” Remote Sensing, vol. 

14, no. 1, p. 81, 2021. 

[5] D. Gosai, C. Raval, R. Nayak, H. Jayswal, and A. Patel, “Crop recommendation 

system using machine learning,” International Journal of Scientific Research in 

Computer Science, Engineering and Information Technology, vol. 7, no. 3, pp. 

558–569, 2021. 

[6] A. Andualem, T. Wato, A. Asfaw, and G. Urgi, “Improving primary nutrients 

(npk) use efficiency for the sustainable production and productivity of cereal 

crops: A compressive review,” Journal of Agriculture Sustainability and 

Environment ISSN, vol. 2997, p. 271X, 2024. 

[7] M. W. Veron˝ e, V. Szab´ o, J. Kauser, A. Kocsis, and L. Lippmann, “55. 

mapping of soil moisture variability within´ a field by the optram model,” in 

Precision agriculture’21. Wageningen Academic, 2021, pp. 459–466. 

[8] M. G. B. V. P. A. N. G. K. J. N. E. B. A. E. G. Veron˝ e, M Wojtaszek () and 

G. Gy, “Water resources in´ efficient networks (wren) project overview and 

presentation of the research results carried out during the first year.” 

International Symposium on Applied Informatics and Related Areas, vol. 18, 

2023. 



33 

[9] Q. Zhao, L. Yu, Z. Du, D. Peng, P. Hao, Y. Zhang, and P. Gong, “An overview 

of the applications of earth observation satellite data: impacts and future 

trends,” Remote Sensing, vol. 14, no. 8, p. 1863, 2022. 

[10] M. Wojtaszek and I. Abdurahmanov, “Crop water condition mapping by optical 

remote sensing.” International Journal of Geoinformatics, vol. 17, no. 1, 2021. 

[11] H. Zhao, L. Di, Z. Sun, P. Hao, E. Yu, C. Zhang, and L. Lin, “Impacts of soil 

moisture on crop health: A remote sensing perspective,” in 2021 9th 

International Conference on Agro-Geoinformatics (Agro-Geoinformatics). 

IEEE, 2021, pp. 1–4. 

[12] A. Vasudevan, D. A. Kumar, and N. Bhuvaneswari, “Precision farming using 

unmanned aerial and ground vehicles,” in 2016 IEEE technological innovations 

in ICT for agriculture and rural development (TIAR). IEEE, 2016, pp. 146–150. 

[13] M. Padhiary, R. Kumar, and L. N. Sethi, “Navigating the future of agriculture: 

A comprehensive review of automatic all-terrain vehicles in precision 

farming,” Journal of The Institution of Engineers (India): Series A, vol. 105, 

no. 3, pp. 767–782, 2024. 

[14] A. Farella, F. Paciolla, T. Quartarella, and S. Pascuzzi, “Agricultural unmanned 

ground vehicle (ugv): a brief overview,” in International Symposium on Farm 

Machinery and Processes Management in Sustainable Agriculture. Springer, 

2024, pp. 137–146. 

[15] B. Ferreira, R. G. Silva, and M. Iten, “Earth observation satellite imagery 

information based decision support using machine learning,” Remote Sensing, 

vol. 14, no. 15, p. 3776, 2022. 

[16] R. Wilkinson, M. Mleczko, R. Brewin, K. Gaston, M. Mueller, J. Shutler, X. 

Yan, and K. Anderson, “Environmental impacts of earth observation data in the 

constellation and cloud computing era,” Science of The Total Environment, vol. 

909, p. 168584, 2024. 

[17] G. Camps-Valls, M. Campos-Taberner, A. Moreno-Mart´ ´ınez, S. Walther, G. 

Duveiller, A. Cescatti, M. D. Mahecha, J. Munoz-Mar˜ ´ı, F. J. Garc´ıa-Haro, 

L. Guanter et al., “A unified vegetation index for quantifying the terrestrial 

biosphere,” Science Advances, vol. 7, no. 9, p. eabc7447, 2021. 

[18] S. Li, L. Xu, Y. Jing, H. Yin, X. Li, and X. Guan, “High-quality vegetation 

index product generation: A review of ndvi time series reconstruction 

techniques,” International Journal of Applied Earth Observation and 

Geoinformation, vol. 105, p. 102640, 2021. 

[19] C. R. Rousseau and P. Buhlmann, “Calibration-free potentiometric sensing with 

solid-contact ion-selective¨ electrodes,” TrAC Trends in Analytical Chemistry, 

vol. 140, p. 116277, 2021. 

[20] A. Kumari, P. Mishra, S. K. Chaulya, G. M. Prasad, M. Nadeem, V. Kisku, V. 

Kumar, and A. Chowdhury, “Estimation of soil nutrients and fertilizer dosage 



34 

using ion-selective electrodes for efficient soil management,” Communications 

in soil science and plant analysis, vol. 55, no. 13, pp. 1920–1941, 2024. 

[21] E. Noboa, M. Racz, L. Sz´ ucs, P. Galambos, G. M˝ arton, and G. Eigner, 

“Development of an emg based svm´ supported control solution for the 

platypous education mobile robot using mindrove headset,” IFAC-

PapersOnLine, vol. 54, no. 15, pp. 304–309, 2021. 

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and 

A. Ng, “ROS: an open-source Robot Operating System,” vol. 3, Jan. 2009, 

journal Abbreviation: ICRA Workshop on Open Source Software Publication 

Title: ICRA Workshop on Open Source Software. 

[23] N. S. Chandel, S. K. Chakraborty, A. K. Chandel, K. Dubey, D. Jat, Y. A. 

Rajwade et al., “State-of-the-art aienabled mobile device for real-time water 

stress detection of field crops,” Engineering Applications of Artificial 

Intelligence, vol. 131, p. 107863, 2024. 

[24] I. A. Lakhiar, H. Yan, C. Zhang, G. Wang, B. He, B. Hao, Y. Han, B. Wang, 

R. Bao, T. N. Syed et al., “A review of precision irrigation water-saving 

technology under changing climate for enhancing water use efficiency, crop 

yield, and environmental footprints,” Agriculture, vol. 14, no. 7, p. 1141, 2024. 

[25] I. Malashin, V. Tynchenko, A. Gantimurov, V. Nelyub, A. Borodulin, and Y. 

Tynchenko, “Predicting sustainable crop yields: Deep learning and explainable 

ai tools,” Sustainability, vol. 16, no. 21, p. 9437, 2024. 

[26] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep 

learning,” Electronic markets, vol. 31, no. 3, pp. 685–695, 2021. 

[27] A. Majumder, S. Gupta, D. Singh, and S. Majumder, “An advanced model to 

predict heart disease applying random forest classifier and whale optimization 

algorithm,” Indian Journal of Science and Technology, vol. 16, no. 43, pp. 

3679–3690, 2023. 

[28] R. Meenal, P. A. Michael, D. Pamela, and E. Rajasekaran, “Weather prediction 

using random forest machine learning model,” Indonesian Journal of Electrical 

Engineering and Computer Science, vol. 22, no. 2, pp. 1208– 1215, 2021. 

[29] T. Hidayat, D. Manongga, Y. Nataliani, S. Wijono, S. Y. Prasetyo, E. Maria, 

U. Raharja, I. Sembiring et al., “Performance prediction using cross validation 

(gridsearchcv) for stunting prevalence,” in 2024 IEEE International Conference 

on Artificial Intelligence and Mechatronics Systems (AIMS). IEEE, 2024, pp. 

1–6. 

[30] A. Mizumoto, “Calculating the relative importance of multiple regression 

predictor variables using dominance analysis and random forests,” Language 

Learning, vol. 73, no. 1, pp. 161–196, 2023. 

  


