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Abstract: Efficient water resource management is paramount for sustainable agriculture amidst
increasing global population and climate variability. This paper establishes a novel theoretical
framework for an Al-driven Decision Support System (DSS) specifically designed to enhance
precision irrigation practices. The primary aim of this investigation is to leverage this
framework to develop a deep learning Al model capable of accurately predicting and precisely
detecting water stress sections within crops of interest, thereby enabling highly targeted and
efficient water applications. The proposed framework integrates multiple heterogeneous data
sources to construct a comprehensive spatio-temporal understanding of crop water status. It
includes Earth Observation (EO) data from Sentinel-2 B satellites, specifically utilizing
vegetation indices such as Normalized Difference Vegetation Index (NDVI) for assessing
vegetation health and Normalized Difference Moisture Index (NDMI) for soil water content.
Complementing this, high-resolution in-situ measurements are collected by 10T sensors (e.g.,
10T-NPK for soil moisture, NPK levels, temperature, and pH) mounted on mobile robot
platforms like PlatypOUs, providing essential ground truth validation. Furthermore,
meteorological data, i.e., precipitation, air, and soil humidity, is integrated to provide crucial
environmental context and predictive insights. This paper outlines a methodology for developing
a Recurrent Neural Network (RNN) architecture based on a U-Net topology that will effectively
encode features from these integrated data streams. The model incorporates multiple
convolution layers for efficient spatial feature extraction, Long Short-Term Memory (LSTM)
layers to capture temporal dependencies, and attention layers to focus on the most critical
features for prediction. The ultimate output is a newly generated image representing the
predicted spatial distribution of water stress across the field of interest, allowing pixel-based
classification for targeted irrigation recommendations. This foundational investigation,
including initial data analysis and feature engineering, paves the way towards optimized water
use, significantly improving agricultural productivity and enhancing resource conservation.
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Future research will focus on this advanced Al model's rigorous development, training, and
validation.

Index Terms: Water sustainability, Precision Farming, Artificial Intelligence, Human operator
support, Mobile Robot Platforms, 10T.

1 Introduction

The increasing global population and changing climate patterns place unprecedented
demands on water resources, particularly in the agricultural sector, which accounts for
a significant portion of freshwater consumption [1]. Thus, efficient management of
water resources is crucial to ensure sustainable agricultural productivity and global
food security [2]. Traditional irrigation practices often lead to water wastage due to
inefficient distribution and a lack of precise information on crop water requirements
[3]. Therefore, there is a growing need for innovative approaches to optimize water
use, improve crop yields, and minimize environmental impact.

The health and productivity of crops are intricately linked to the availability of essential
nutrients, including nitrates (N), phosphates (P), and potassium (K) [4]. These macro-
nutrients play vital roles in various physiological processes such as photosynthesis,
nutrient transport, and root development [5]. Monitoring their levels in the soil is
crucial to optimize fertilization and irrigation strategies [6]. In addition, Earth
Observation (EO) systems provide valuable data for land cover classification [7], [8],
which is essential to understand the spatial distribution of different types of vegetation
and their water requirements. Classifying land cover makes it possible to identify areas
with similar hydrological characteristics and tailor irrigation management accordingly.

Satellite sensors offer a powerful means to assess vegetation conditions and water
stress [9]. The Normalized Difference Vegetation Index (NDVI1) is a widely used index
that measures the greenness of vegetation and is related to photosynthetic activity and
biomass [10]. On the other hand, the Normalized Difference Moisture Index (NDMI)
is sensitive to the water content of vegetation and soil [7]. These indices, derived from
multi-spectral imagery acquired by satellites, i.e., Sentinel-2 A/B, provide valuable
information on crop water status's spatial and temporal variability [8], [11].

Although EO provides a broad overview, in situ data collection is essential to capture
variations at higher resolution and validate satellite-based information [9]. For this
reason, mobile robot platforms equipped with environmental sensors offer a flexible
and efficient solution to collect real-time data on soil conditions [12], [13]. These
robots can measure crucial parameters, e.g., soil moisture and temperature, at specific
locations within the field to be studied [14], providing valuable data to calibrate and
validate models of water stress.
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This paper is part of the Water Resource Efficiency Network (WREN) project, which
aims to enhance the spatial and temporal resolution of drought monitoring and improve
site-specific management support for optimal irrigation and crop yield, combining
remote sensing and local data, leveraging EO methods and Al techniques [8]. This
paper proposes a conceptual framework for an Al-driven decision support system
(DSS), which integrates EO data, in-situ measurements from loT sensors and mobile
robot platforms, and advanced machine learning techniques to predict crop water stress
and optimize irrigation scheduling. Based on the U-Net model, the proposed system
will leverage a Recurrent Neural Network (RNN) architecture to effectively encode
relevant features from satellite images and in-situ data. This approach aims to provide
accurate, site-specific irrigation recommendations, enhance water use efficiency,
improve crop health, and promote sustainable farming practices.

2 Background and Related Work

2.1 Earth Observation and Precision Farming

Earth Observation (EO) has become an indispensable tool in modern agriculture,
offering a wide range of applications for precision farming ,[3], [9]. EO data from
satellite and aerial platforms provide valuable information on various crop and
environmental parameters, enabling farmers to make informed decisions and optimize
their management practices.

The research of Ferreira et. al. [15] suggested that the combination of Earth observation
and machine learning was successfully applied in several different fields across the
world. The implications of EO in precision farming are not excluded, as this data can
be used for multiple purposes e.g., crop monitoring, water management, nutrient
management, pest and disease management, yield prediction, estimating crop yields
before harvest; and land cover classification [7], [3], [11].

Consequently, by providing timely and accurate information, EO helps farmers to
improve input use efficiency, reduce environmental impact, and enhance crop
productivity [16].

Vegetation indices (VIs) are quantitative measures derived from EO data that provide
information about the biophysical properties of a field to be studied, as they are widely
used to assess crop health, monitor growth, and detect stress [17]. The Normalized
Difference Vegetation Index (NDVI) is used to measure the difference between near-
infrared (NIR) and red light reflected by vegetation, as healthy vegetation reflects more
NIR light and absorbs more red light, resulting in high NDV1 values, while low NDV I
values indicate sparse or stressed vegetation [18].
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On the other hand, the Normalized Difference Moisture Index (NDMI) is another
important VI sensitive to vegetation water content. It uses the difference between NIR
and shortwave infrared (SWIR) reflectance. SWIR is sensitive to water in plant
canopies, so NDMI can help estimate crop water status and detect water stress [7].

Other VIs, such as the Enhanced Vegetation Index (EVI) and the Soil-Adjusted
Vegetation Index (SAVI), are also used in agriculture to account for atmospheric
effects and soil background, respectively, making them a good option to extract
relevant characteristics to estimate crop water content [17].

Previous research has demonstrated the potential of EO and Artificial Intelligence (Al)
to improve agricultural water management. For instance, [7] found a correlation above
90% between soil moisture values estimated from satellite images (using NDMI) and
ground-truth moisture lectures based on the OPTRAM model, highlighting the
effectiveness of EQ in capturing soil moisture variations.

2.2 Mobile Robot Platforms in Precision Farming

In addition to EO data, real-time information on soil conditions is crucial for precision
farming [8]. Soil parameters such as N, P, K levels, temperature, moisture, and pH can
vary significantly within a field, affecting crop growth and yield [6], [4].

Sensors with ion-selective electrodes (ISEs) are devices that measure the activity of
specific ions in a solution [19]. For this reason, this method can be used to determine
the concentration of N, P, and K ions in the soil, providing a direct measure of nutrient
availability to plants [20]. These electrodes are designed to selectively respond to their
target ions, generating a potential difference proportional to the ion activity, which can
then be converted into a measurable concentration using the Nernst equation 1 [19].

RT
_ _
E=F"+ o In(a;) M

where:

E is the measured potential, E° is the standard electrode potential, R is the ideal gas
constant, T is the absolute temperature, n is the charge of the ion, F is the Faraday
constant, a;is the activity of the ion.

These sensors can be incorporated into Unmanned Vehicles (UV) as they can collect
relevant soil information [13], providing a comprehensive understanding of its
conditions throughout the field of study to optimize and validate water distribution
models, fertilizer usage, irrigation scheduling, and other management practices.

Mobile robot platforms are increasingly being adopted in precision farming for various
tasks, including in situ data collection [14]. As UVs can navigate through the field, this
technology can significantly reduce the workload of farmers or researchers in several
ways, being one of the motivations of this research.
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2.2.1  The PlatypOUs Robot Platform.

The PlatypOUs robot (shown in Figure 1) is a differential drive mobile platform with
two wheels on the front and a caster wheel on the back. Created by the Special College
of Robotics of Obuda University [21]. The control system is based on the open-source
ROS robotics middleware. The version used is Noetic [22], where a node has been
created to receive a velocity input in a twist format to control the robot’s position.

The robot has environmental sensors, including an 10T-NPK sensor, which measures
soil moisture, NPK levels, temperature, and pH. Mobile robots like PlatypOUS
streamlines the data collection process, improving the efficiency and accuracy of in
situ measurements, which are crucial to generate accurate land cover maps, calibrate
EO data, and train Al models to predict crop water stress.

2.3 Al in Precision Farming

Al is rapidly transforming the agricultural sector [2], with significant advances in water
stress estimation and precision farming [3]. Machine learning algorithms, including
deep learning techniques, are increasingly used to analyze complex agricultural data
from various sources, including EO imagery, meteorological data, and in situ sensor
measurements [5].

In water stress estimation, Al models are being developed to predict crop water
requirements and detect drought conditions [23]. These models can identify patterns
and relationships between different variables, such as vegetation indices, soil moisture,
and weather parameters, to provide accurate and timely information on crop water
status [24].

Artificial intelligence plays a crucial role in precision farming, allowing the
development of site-specific management strategies [25]. Machine learning algorithms
can be used to analyze data on soil properties, crop health, and environmental
conditions to optimize the application of inputs such as water, fertilizers, and pesticides
[23]. It increases efficiency, reduces costs, and minimizes environmental impact [16].
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Figure 1
CAD representation of the PlatypOUs mobile robot platform

3 Methodology

The proposed methodology aims to analyze and integrate information from multiple
data sources i.e. EO data (e.g. NDMI, NDVI), in-situ soil features’ measurements, and
weather stations information to train an Al in order to take part in a Decision Support
System (DSS) for precision irrigation.

3.1 Field of Study

The land selected to be the subject of analysis is located in the region of Esztergom -
Hungary (Csolnok), as shown in Figure 2.

3.2 Dataset acquisition and Pre-processing

3.2.1. Earth Observation Data. Multi-spectral images will be acquired from Sentinel-2
AJ/B satellites between January 2022 and May 2025. These images will be pre-selected
based on the cloud cover percentage, where a threshold of 20% was set to discriminate
relevant images considering the location of the field to be analyzed. Furthermore,
vegetation indices, i.e. NDMI and NDVI will be calculated using equations 2 and 3,
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respectively, based on the frequencies Near Infrared (NIR), Short Wave Infrared
(SWIR), and Red (RED) captured by the satellite sensors.

NIR - SWIR

NDMI = TR T SWiR )
NIR— RED

NV = SR T RED ©)

Figure 2
Field of Study

As stated in section 2, Wojtaszek et. al. found a correlation above 90% between soil
moisture values estimated from satellite images (using NDMI) and ground-truth
moisture data [10]. These results strongly suggest that satellite imagery, more
specifically, the NDMI and NDVI indexes, are ideal for providing relevant features to
a deep learning model capable of predicting the state of water stress of the crop of
interest [5], [14].

On the other hand, a shape based on the land geometry and location will be applied as
a mask to create fix-sized images that contain only the information of the Field of
Interest (Fol) to reduce noise and limit the amount of information that the deep learning
model will process, therefore reducing the processing time [11], [15].

3.2.2 In-situ Data

Real-time data on soil conditions will be collected using loT sensors mounted on a
mobile robot platform. For research and development purposes, the PlatypOUS
platform has been used to test the system integration, as the robot is equipped with an
10T-NPK sensor (see Figure 3) to measure soil moisture, NPK levels, temperature, and
pH.
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Once the data has been collected, an Inverse Distance Weight interpolation method
will be applied to estimate the soil’s moisture content across the entire FOI, to be used
during the training and validation process of the deep learning model development
[26].

3.2.3  Meteorological data

Weather data (i.e. precipitation, air and soil temperature, relative humidity, and soil
moisture at different depths) will be collected from 121 available meteorological
stations distributed throughout the country, as can be noticed in red dots inside the map
of Figure 4.

The mentioned information is collected and stored in a csv file where each row
contains the daily average of each variable sorted by station 1D, opening the possibility
of training a Random Forest Regressor model to predict future values on each one of
the available stations.

The resultant dataset will be divided into two sub-sets: features (X) and targets (y).
Both include all four selected variables, with the aim of predicting all variables based
on their interdependence.

Figure 3
N-P-K Sensor
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Figure 4
Spatial distribution of the available weather station across Hungary

Furthermore, the datasets will be normalized using the library StandardScaler [27] to
normalize all features and target values between -1 and 1, ensuring they are on
comparable scales to improve the model’s performance.

The results of the Random Forest model predictions will be evaluated by comparing
them with actual weather data, where metrics such as Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE) will assess the model accuracy [28].

3.3 Feature Engineering and Variable Selection

Random forests are known for their robustness and ability to handle large datasets with
numerous variables. In this methodology, the model is hyper-parameterized using the
library GridSearchCV to optimize performance, ensuring accurate predictions [29].

A set of four variables, i.e. air temperature, soil temperature, soil moisture, and
relative humidity, was selected to be part of the prediction validation process; selection
that was performed based on the author’s considerations.

On the other hand, one of the features that Random Forest models offer is applied in
this study where apart of a forecasting regression process, a relevance analysis will be
performed to
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Figure 5
Satellite image pre-processing result

determine which of the preselected variables is the most relevant in weather forecasting
[30], to be included as features in the proposed deep learning model.

4 Results

4.1 EO - Satellite images

Figure 5 shows two instances of the satellite image pre-processing, where A and B are
the NDMI calculated per pixel before the region of interest is cut out while maintaining
the geographic coordinates, and the respective normalized value, where the regions
colored blue are the sections presenting more water stress.

4.2 Forecasted Variables

After training the Random Forest model based on the found hyper-parameters, it was
used to predict the four selected variables for the test dataset (y). Predictions were
scaled back to their original units using the inverse transform of the library
StandardScaler [27]. The results were evaluated for each target variable, and the root
mean square error (RMSE) was calculated as a measure of the accuracy of the
prediction using equation 4.
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RMSE =

1 n A
. E (yz _yi)2
n 4

i=1

(4)

where yiand y7; are the real and the predicted values, respectively, and n is the total

number of trials.

RMSE Results
Variable Name RMSE (%)
Air Temperature 1.25
Relative humidity 3.45
Soil Temperature 1.75
Soil Moisture 4.02
Table 1

Calculated rmse for the selected variables
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Figure 6
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Predicted vs. Real values of one of the selected variables (Air Temperature)

Table 1 displays the resultant RMSE for each of the analyzed variables. In contrast,
figure 6 compares the predicted and real data for the variable Air Temperature.
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4.3 Variable Relevance Analysis

As section 3 mentioned, a Random Forest model was implemented to analyze the
relevance of the available variables in terms of weather forecasting. As a result of the
feature relevance analysis, it was identified that air and soil temperature were the most
significant while predicting weather patterns from the selected dataset, as shown in
Figure 7, underscoring their importance in agricultural modeling and suggesting that
these variables should be included as features for the proposed Al model.

4.4 Discussion

The presented paper proposes a system framework to develop a DSS based on deep
learning methods. It is RNNs that include convolution layers to encode relevant
information, LSTM layers to retain time-relevant features into account to generate a
prediction based on the

Feature Importances

air_temperature

soil_temperature

soil_moisture

relative_humidity

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Relative Importance

Figure 7
Results of the feature Relevance analysis

output of an attention layer before it is decoded to obtain a generated image
representing the predicted state of the water stress distribution on the field of interest
to be studied, providing the availability to suggest irrigation in the location where it is
required, reducing the waste of the water resource during the irrigation process as it
will be delimited to the area where it is required to prevent drought.

Although this proposal includes multiple relevant features from different data sources,
it is notable that there is more information that should be considered in the DSS, as

29



underground water deposits and elevation levels, land cover maps, in order to obtain a
water flow approximation that could prevent drought in crops.

5 Further Developments

5.1 Al Model Development and Validation

A Recurrent Neural Network (RNN) model will be developed to predict crop water
stress based on the extracted features. The model will be trained using historical data
and validated using independent data sets. The following Figure 8 shows a
representation of the topology of the proposed model, Where can be notable the
intention to use multiple convolution layers to encode the features presented in the
post-processed satellite images while including the most relevant variables from the
weather stations to posteriorly integrate a Long Short Term Memory layer (LSTM) to
capture the relevance of the encoded data, to continue with an Attention layer to
highlight the relevance of the most important features to be considered before a set of
inverse convolutions are decoding the predicted information into a newly generated
image based on the predicted values.

. >/

L)

o

3

Figure 8.
Topological representation of the proposed Deep learning model
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Segment 1 (-1 - 0.2) Bare soll/dry, very low canopy cover Segment 2 (0.2 - 0.4) high water stress/low canopy cover Segment 3 (0.4 - 1) No water stress/high canopy cover
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Figure 9
Example of the pixel-based classification

5.2 Decision Support System Development

A decision support system (DSS) will be developed to provide irrigation
recommendations based on the model predictions.

The DSS will integrate data visualization tools and a user-friendly interface where the
farmer will be notified where irrigation is required after applying a pixel-based
classification, as the example in Figure 9 shows, where the range to determine the
water-stressed sections was selected for demonstration purposes.

Conclusion

This paper successfully establishes a robust theoretical framework for an Al-driven
Decision Support System (DSS) aimed at highly precise water stress detection and
optimized irrigation management in agricultural settings. The feasibility and potential
of this framework are underpinned by several key findings derived from the
investigation.

Firstly, the research demonstrates the efficacy of integrating diverse, multi-modal data
streams for a holistic understanding of crop water status. It This includes Earth
Observation (EO) data, specifically the Normalized Difference Vegetation Index
(NDVI) and Normalized Difference Moisture Index (NDMI) derived from Sentinel-2
A/B satellites, which provide crucial insights into vegetation health and soil water
content. Secondly, integrating high-resolution in-situ measurements collected by l0T-
NPK sensors on mobile robot platforms like PlatypOUs, provides essential ground
truth for soil moisture, NPK levels, temperature, and pH. Complementing these,
comprehensive meteorological data from a network of weather stations offers critical
environmental context and predictive insights. The successful preliminary analysis,
including the validation of meteorological data forecasting with low RMSE values
(e.g., 1.25% for air temperature, 1.75% for soil temperature) suggests that variables
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such as air and soil temperature and humidity should be considered as features to take
into account while training a deep learning model. On the other hand, satellite images
can provide important information related to vegetation’s health and soil water content
by calculating the indexes NDVI and NDMI, respectively. The proposed deep learning
topology includes convolution layers to encode information, an LSTM and Attention
layer to perform a prediction, and inverse convolutions to generate an image based on
the predicted features.
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