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Abstract: In recent literature, an increasing number of metaheuristic algorithms have been
proposed for solving individual optimization problems. One such complex problem, widely
studied and addressed with various algorithms, is the economic dispatch problem. Hence,
this paper aims to establish a systematic approach for selecting the most suitable
metaheuristic algorithm by employing the COPRAS (COmplex PRoportional ASsessment)
method, a multi-criteria decision-making (MCDM) technique. The proposed methodology is
applied to evaluate and rank five metaheuristic algorithms (MSA, FA, PSO, PSOGSA, and
PSOCGSA) across four variants of the economic dispatch problem. The assessment
considers multiple performance metrics, including best-obtained results, standard deviation,
mean values, error rates, computation time, and convergence behaviour. To ensure the
reliability of the ranking, the results were further validated using the EDAS method,
confirming the robustness of the selection process. This study provides a structured
framework for algorithm recommendation, aiding researchers and practitioners in choosing
the most effective optimization approach for similar complex problems.
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1 Introduction

A wide range of metaheuristic algorithms has been proposed in the literature to
address complex optimisation problems. These problems often have multiple
subproblems, each characterised by distinct objective functions and constraints.
According to the ,,No free lunch“ theorem [1], a single algorithm for resolving a
multifaceted problem cannot be the optimal solution for each subproblem.
Consequently, there has recently been growing interest in developing
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methodologies for selecting the most suitable algorithm from several proposed
solutions to a specific multifaceted problem [2]. One such optimisation challenge is
the Economic dispatch problem, which has received considerable attention in the
literature due to its significance in power system operations [3]. In this study, we
employ the COmplex PROportional Assessment (COPRAS) multi-criteria
decision-making (MCDM) method [4] to identify the most appropriate
metaheuristic algorithm for solving the economic dispatch problem. The algorithms
under consideration include the Moth Swarm Algorithm (MSA) [5], Firefly
Algorithm (FA) [6], Particle Swarm Optimisation (PSO) [7], PSOGSA [8], and
PSOCGSA [2]. Given the comparable performance of these metaheuristic
algorithms, a more detailed evaluation was conducted using a multi-criteria
decision-making approach to establish a ranking based on their effectiveness across
different functions. To ensure a comprehensive assessment, multiple performance
metrics were considered, including the Best-obtained results (B), Standard
Deviation (SD), Mean values (Mv), Error rates (Er), Computation time (Ct), and
Convergence (C) for each algorithm. The most suitable algorithm for solving the
Economic dispatch problem was identified by integrating these criteria according
to four different functions. The COPRAS method enables a structured comparison
and selection of the optimal algorithm. This methodology ensured that the ranking
process accounted for the accuracy and robustness of the algorithms and their
efficiency and stability across various problem variants.

2 Testing the algorithms

We test the selected algorithms on a standard IEEE 30-bus 6-generator system with
a total load demand of 283.4 MW. Economic dispatch is the adjustment of the
output power of several-generators in a thermal power plant to minimize fuel cost
by satisfying the constraints in the system. In this optimization process, the four
most commonly used objective functions (fi, f2, f3, and fs) are as follows:

f1=zgée(ag+bng+chgz), g=12....G
P.=0

loss

1)

where, f; ($/h) is the fuel cost function of all generator units in the thermal power
plant that should be minimized; Py is the output power of generator g (MW); G is
the total number of generators; ag, by and cg are the cost coefficients. In this case,
power losses Pioss in the power system to which the generators are connected are
neglected (Pioss= 0).

fz :zgeG(a9+b9Pg+Cng2)1 g= 1 2,..G

)
PlOSS = deGZjeG Pg ng Pj +deG BOQ Pg + BOO
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In this case, the objective function is the same as in the previous one, but the power
losses Pioss in the system are taken into account. By and Bog are the coefficients of
the B-loss matrix, and By is a constant.

f, :dee(ag +, P, +Cgpgz)+zgee
P.=0

loss

d,sin(e, (B ~R)), 9= 1 2...G

In this case, the fuel cost function (fs) takes into account the valve point effect in the
thermal power plant. Pgmin (MW) is the minimum power of the generator g; dg and

eg are coefficients for valve point effect. Pioss are neglected.
2

f, = dee (ag +b, R, +¢, Ry )+ zgee

Ploss = ZgEGZjEG Pg Bgi PJ + des BOQ PQ +By

Function f4 represents the fuel cost function, which accounts for both power loss
and the valve-point effect. The constraint on generator power output remains
consistent across all four optimization processes and is defined as follows:

d_ si m_p)), g=1 2.,
sine, (P, Pg))‘ g=12..G “

min max
P <Py <Py (5)

where, Pgmi" and P,"*are the minimum and maximum power of generator g,

respectively. During the optimization process the power balance in the system must
be satisfied, i.e.:

zgeG Pg —Pp —Ross =0 (6)

where, Ppis the total power of the consumer. Coefficients of fuel cost, emission and
B-loss matrices are taken in this paper from [9]. The algorithms are implemented in
MATLAB R2017a computational environment and run on 1.3 GHz, with 8.0 GB
RAM. The best results of the simulations are obtained after 30 runs. The coefficients
of the algorithms are shown in Table 1.

FA MSA PSOGSA and PSOCGSA PSO

N tmax (24 ﬂmin 7 N tmax Nc N tmax GO o Cl CZ N tmax Cl CZ

50(200 |0.25|0.20 | 1|50]200 | 6 |[50|{200 |1 [20|0.5|1.5]50]200 |0.5 |15

Table 1.
Coefficients of the algorithms applied to the test system
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The testing results indicate that the optimal fuel cost values are either identical or
highly similar across all five algorithms. However, other performance metrics
exhibit varying degrees of similarity or significant differences among the tested
algorithms. In the next section, algorithms are ranked based on multiple evaluation
metrics, overused functions of Economic dispatch problem.

3 COPRAS method in Multi-Criteria Decision-
Making

The Complex Proportional Assessment (COPRAS) method is a widely used multi-
criteria decision-making (MCDM) approach that facilitates the ranking and
selecting alternatives based on multiple conflicting criteria. Introduced by
Zavadskas, Kaklauskas, and Sarka in 1994, COPRAS is particularly effective in
situations where decision-makers must evaluate alternatives by considering both
beneficial and non-beneficial criteria while maintaining proportionality between the
alternatives [10], [11]. This method follows a systematic process for ranking and
evaluating options based on their relative importance and utility. By analysing best-
case and worst-case scenarios, COPRAS ensures a well-balanced decision-making
approach that effectively accounts for trade-offs between competing criteria. Key
characteristics of the COPRAS method include its compensatory nature, which
allows weaker criteria to be offset by stronger ones, its ability to maintain
independence among attributes, and its capability to convert qualitative attributes
into quantitative measures, making it a versatile tool for multi-criteria decision-
making applications [12].

Step 1. Formulation of Decision Matrix

Xp  Xg oo X
Xoy Koy eee Xop

o LT )
Xml Xm2 an

Where x;j is the estimated value of the i-th in relation to the j-th criterion, m is the
number of alternatives and n is the number criteria.

Step 2. The Normalized Decision Matrix. Normalization of the initial decision
matrix using the linear normalization procedure. The equation (8) is used for
normalization in the COPRAS method:

R= [ru‘ ] = mXij ®)

i=1
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Step 3. The Weighted Normalized Decision Matrix. Equation (9) is used to
calculates the values for the weighted normalized decision matrix.

D=[x]=r-w i=L..,m; j=L..,n )

Where wj is the normalized value of the i-th alternative in relation to the j-th criterion
and w; is the weight or importance of the j-th criterion. The sum of weighted
normalized values for each criterion is always equal to the value of that criterion:

i Yij =W (10)

Step 4. The Maximizing and Minimizing Indexes

The indices for maximising and minimising each attribute are determined by
whether the attributes are negative or positive, utilizing equations (11) and (12):

S, = i Y.ij 11)
Si= Zi: Y (12)

Where y.jj and y.j are weighted normalized values for positive or negative criteria,
respectively.

Step 5. The relative significance value. Determining the relative importance of each
alternative. Relative weight Q; for the i-th alternative is calculated using the
equation (13) or equation (14):

m
min; s, —iY s,
i

i=1
R X (13)
TS,
is—i
Q =S, +i:1m— (14)
s_izi
i1 S

Step 6. Final Ranking of Alternatives. The alternatives are arranged in descending
order according to their relative importance values, with the highest final value
ranked first.

The COPRAS method has been extensively applied across various fields due to its
efficiency in handling multi-criteria decision-making problems. It has been widely
utilized in engineering optimization [4], transportation planning [13], energy sector
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analysis [14], supply chain management [15], in risk assessment [16], [17], [18],
investment project selection [19], manufacturing environments [20], logistics
performance evaluation [21], public health and occupational safety [22], aerospace
engineering [23]. These diverse applications underscore the robustness and
adaptability of the COPRAS method, making it a powerful tool for tackling complex
decision-making challenges across multiple industries. Compared to other MCDM
methods, such as TOPSIS and VIKOR, COPRAS offers a straightforward
computational process and ensures that the final ranking reflects the relative
importance of each criterion while maintaining consistency in decision-making
[14]. Therefore, in this research COPRAS method is used to rank algorithms
according to different performance measures to solve mentioned Economic dispatch
problem variants.

4 Results of ranking algorithms

Based on the findings from the previous research phase, the five algorithms tested,
MSA, FA, PSO, PSOGSA, and PSOCGSA, were ranked using the COPRAS
method. The initial decision matrix, presented in Table 2, displays key performance
metrics for each algorithm, including the best (minimum) obtained values, mean
values, standard deviation, error rate, convergence rate, and computation time.

After performing the linear normalization explained in step 2 equation (8) and
weighting the normalized matrix equation (9), the weight-normalized decision
matrix is obtained (Table 3).

Criteria Best (B) min Standard Deviation (SD) min

-

Alternatil B (f1) | B(f2) | B(f3) | B(4) | f1(SD) S% f3 (sD) | 4 (sD)

es| (SD)

MSA 822'61114 gggéggg?’ 631.34826 [635.82880 h.42645122E 6.81784E [7.823973066.6273366
554 014 06 06 5 09

FA 83261114 23269983 631.34937 §35.82395 b.103360307 0.030611 [4.615530330.2558257
828 070 E 04 058 B 79

PSO 83‘1);31114 23269983 631.90736 535.90446 b.893239936 6.858534 6.372535198.4013972
059 527 E400 612 07

PSOGSA gggé““ 23269983 631.33121 §35.82011 B.468910298 [11.12599 6.61759886{15.576524
085 047 E 13 065 1 660

ZSOCGS gggé““ 23269983 631.33122 §35.82041 P. 701100444 [7.285294 [4.945913878.7227920
039 383 £.08 731 P b5

Criteria Mean value (Mv) min Error rate (Er) min

-, L) [ 2o | sy [ sy | fEn [ rRED | BE) | MED
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IAlternati
ves]
MSA ?(3)2'21114 605.99837§639.59170 [639.62799 2'1)173818 1.44223E [1.308511600.5988935
820 W22 639 06 5 06
FA - |S0015 B06.00395633.36741 [636.03920 | 211228 10.000922 0.322612030.0344727
852 788 198 o1 B b3
PSO ggi.(?sw 611.005550642.59481 [648.73761 2'33113767 0.841121 [1.784190392.0316293
167 029 871 " A 01
PSOGSA 832.91114 616.65200636.37489 [661.44054 E‘_ﬁ’m 1.758030 0.798983214.0295099
830 520 499 943 b 54
/F_’\SOCGS 822'31114 607.90362633.28208 [637.91709 2'5)23727 0.314399 0.309095610.3298075
B53 53 308 539 h 51
Criteria Computation time (Ct) min Convergence (C) min
Alternati| 1(Ct) | f2(Ct) | 3t | 4@y | f1©) | 2@ | BE) | %@
ves]
MSA  .7475703 85795576 -:836095 |4 9703006 | 106 97 750 471
390
i 57 o7
FA  [1.7957458 3.9314304| #:291615 5 5068885 | 66 68 252 334
297
5 b3 o7
PSO  [1.0826305 3.1624637 353004519 3.0545872 | 43 38 98 156
b b3 b7
PSOGSA|0.7845 |1.6958 |1.9987 |15170 | 18 28 7 85
PSOCCS 07856 [23182 | 20040 47472 | 20 17 129 166
Table 2
The initial matrix for ranking tested algorithms
Criteria— Best (B) Standard Deviation (SD)
Alternativi B f2 3 f4
o @ |B@ | BE) | B0y | 16D | b | em | (sp)
ISA 2.300 g.008 00083 | 0.0083 | 4 1000 0.(101 0.(;10 0.0070
A 000 | 0008 |0.0083 | 0.0083 | o oo 0.000 | 0.006 | o003
83 |3 0 3
e 0.00 | 0.008 | 0.0083 | 0.0083 00417 0.011 0.008 0.0088
83 3 0 7
DSOGSA 2'300 2.008 00083 | 0.0083 | 4 0000 0%17 o.(iog 0.0164
PSOCGS | 0.00 | 0.008 | 0.0083 | 0.0083 0.011 | 0.006
A 83 3 0.0000 7 8 0.0092
Criteria— Mean value (Mv Error rate (Er)
Alternativ| f1 f2 3
el omy | oy | BOW) | B0 | LED | RED | S | #ED
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MSA °é°3° 0'208 0.0084 | 0.0083 | 0.0000 0'%02 0'%12 0.0036
FA oé%o 0'208 0.0083 | 0.0082 | 0.0000 0'%00 0'%03 0.0002
PSO 0.00 | 0.008 | (584 | 00084 | 0.0417 | 001 | 0016 | 55159
84 4 5 4
PSOGSA °é°3° 0'308 0.0083 | 0.0085 | 0.0000 o.gzs 0'9107 0.0239
PSOCGS | 0.00 | 0.008 0.004 | 0.002
A 20 | %98 | 0.0083 | 0.0082 | 00000 | O 292 | 0.0020
ICriteria—
Alternativ Computation time (Ct) Convergence (C)
es|
o1 leey ey | n©E | 2 |1BE© ]| 8©
cy |y
MSA oé%o 0210 0.0065 | 0.0100 | 00175 | 0.0163 0'%24 0.0162
FA 02811 0211 0.0161 | 0.0130 | 00109 | 0.0114 0'208 0.0115
PSO oé(;o 0'%09 0.0046 | 0.0061 | 00071 | 0.0064 0'203 0.0054
PSOGSA 06%0 0%04 0.0071 | 0.0030 | 0.0030 | 0.0047 0'%02 0.0029
;SOCGS 06030 O'%% 0.0074 | 0.0095 | 0.0033 | 0.0029 0'204 0.0057

Table 3
Weight-normalized decision matrix

All criteria must be minimised. Employing equation (12) in step 4, the resulting
matrix is obtained, which reveals the calculated total of the cost criteria. The
obtained results from this step is present in Table 4.

Alternatives | S.i(min)

MSA 0.2095
FA 0.1728
PSO 0.2691
PSOGSA 0.1996

PSOCGSA 0.1490

Table 4.
Presentation of gained values S

Applying equation (13), a matrix with the following values is obtained based on
which alternatives are ranked. The obtained results is present in Table 5.
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Alternatives Qi Rank
MSA 0.1839 4
FA 0.2226 2
PSO 0.1429 5
PSOGSA 0.1928 3
PSOCGSA 0.2581 1

Table 5.
Ranking list of algorithm using COPRAS method

The best-ranked algorithm applied in four different functions according to the best
results, standard deviation, computation time and convergence is PSOCGSA,
followed by the FA, PSOGSA, MSA and PSO algorithm.

5 Validation of results using EDAS method

To further validate the results obtained through the COPRAS method and ensure
the accuracy of the ranking, the EDAS (Evaluation Based on Distance from Average
Solution) method was employed [24]. EDAS is a multi-criteria decision-making
technique that evaluates alternatives based on their distances from an ideal or
average solution [25], providing a complementary perspective to the COPRAS
method. In this approach, the alternatives are assessed by calculating their positive
(Si*) and negative (Si) distances from the average solution, which represents a
reference point in the decision space. These distances are then used to rank the
alternatives, with the smallest positive distance indicating the best-performing
alternative [26]. Table 6 displays the final rankings of the analyzed algorithms based
on the EDAS method.

Alternatives | Si Si° Si Rank
MSA 0.7107 0.4184 0.565 4
FA 1 0.6513 0.826 2
PSO 0.3018 0 0.151 5
PSOGSA 0.8770 0.4234 0.650 3
PSOCGSA 0.9836 0.9378 0.961 1

Table 6
Ranking list of algorithm using EDAS method
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The results obtained by the ranked algorithms using the EDAS method showed
consistency in the ranks obtained for different performance measures compared to
the COPRAS method results. Namely, the application of the EDAS method
indicates that the best-ranked algorithm is PSOCGSA (according to the best results,
standard deviation, computation time, and convergence), which points out that the
validity of the obtained results was achieved.

The application of the EDAS method allowed for the cross-validation of the results
derived from COPRAS method, providing additional confidence in the robustness
and consistency of the obtained ranking. By comparing the rankings from both
methods, a more comprehensive and reliable assessment of the alternatives was
achieved, enhancing the overall decision-making process.

Conclusion

This study applied the COPRAS multi-criteria decision-making method to rank and
evaluate metaheuristic algorithms for solving the multi-objective Economic
dispatch problem. The ranking criteria were based on multiple performance
measures, assessing each algorithm’s effectiveness in addressing different
subproblems of the optimization task. By integrating these criteria, the PSOCGSA
algorithm was identified as the most suitable solution for the Economic dispatch
problem. The COPRAS method facilitated a structured and systematic comparison,
ensuring that the final ranking considered the accuracy and robustness of the
algorithms and their computational efficiency and stability across various problem
variants. The EDAS method was employed to validate these findings, confirming
our ranking procedure's reliability. The results of this study demonstrate that the
proposed methodology is effective and can be extended to other optimization
problems requiring the selection of the most appropriate metaheuristic algorithm.
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