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Abstract: In recent literature, an increasing number of metaheuristic algorithms have been 

proposed for solving individual optimization problems. One such complex problem, widely 

studied and addressed with various algorithms, is the economic dispatch problem. Hence, 

this paper aims to establish a systematic approach for selecting the most suitable 

metaheuristic algorithm by employing the COPRAS (COmplex PRoportional ASsessment) 

method, a multi-criteria decision-making (MCDM) technique. The proposed methodology is 

applied to evaluate and rank five metaheuristic algorithms (MSA, FA, PSO, PSOGSA, and 

PSOCGSA) across four variants of the economic dispatch problem. The assessment 

considers multiple performance metrics, including best-obtained results, standard deviation, 

mean values, error rates, computation time, and convergence behaviour. To ensure the 

reliability of the ranking, the results were further validated using the EDAS method, 

confirming the robustness of the selection process. This study provides a structured 

framework for algorithm recommendation, aiding researchers and practitioners in choosing 

the most effective optimization approach for similar complex problems. 
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1 Introduction 

A wide range of metaheuristic algorithms has been proposed in the literature to 

address complex optimisation problems. These problems often have multiple 

subproblems, each characterised by distinct objective functions and constraints. 

According to the „No free lunch“ theorem [1], a single algorithm for resolving a 

multifaceted problem cannot be the optimal solution for each subproblem. 

Consequently, there has recently been growing interest in developing 
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methodologies for selecting the most suitable algorithm from several proposed 

solutions to a specific multifaceted problem [2]. One such optimisation challenge is 

the Economic dispatch problem, which has received considerable attention in the 

literature due to its significance in power system operations [3]. In this study, we 

employ the COmplex PROportional Assessment (COPRAS) multi-criteria 

decision-making (MCDM) method [4] to identify the most appropriate 

metaheuristic algorithm for solving the economic dispatch problem. The algorithms 

under consideration include the Moth Swarm Algorithm (MSA) [5], Firefly 

Algorithm (FA) [6], Particle Swarm Optimisation (PSO) [7], PSOGSA [8], and 

PSOCGSA [2]. Given the comparable performance of these metaheuristic 

algorithms, a more detailed evaluation was conducted using a multi-criteria 

decision-making approach to establish a ranking based on their effectiveness across 

different functions. To ensure a comprehensive assessment, multiple performance 

metrics were considered, including the Best-obtained results (B), Standard 

Deviation (SD), Mean values (Mv), Error rates (Er), Computation time (Ct), and 

Convergence (C) for each algorithm. The most suitable algorithm for solving the 

Economic dispatch problem was identified by integrating these criteria according 

to four different functions. The COPRAS method enables a structured comparison 

and selection of the optimal algorithm. This methodology ensured that the ranking 

process accounted for the accuracy and robustness of the algorithms and their 

efficiency and stability across various problem variants. 

2 Testing the algorithms 

We test the selected algorithms on a standard IEEE 30-bus 6-generator system with 

a total load demand of 283.4 MW. Economic dispatch is the adjustment of the 

output power of several generators in a thermal power plant to minimize fuel cost 

by satisfying the constraints in the system. In this optimization process, the four 

most commonly used objective functions (f1, f2, f3, and f4) are as follows: 
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where, f1 ($/h) is the fuel cost function of all generator units in the thermal power 

plant that should be minimized; Pg is the output power of generator g (MW); G is 

the total number of generators; ag, bg and cg are the cost coefficients. In this case, 

power losses Ploss in the power system to which the generators are connected are 

neglected (Ploss= 0). 
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In this case, the objective function is the same as in the previous one, but the power 

losses Ploss in the system are taken into account. Bgj and B0g are the coefficients of 

the B-loss matrix, and B00 is a constant.   
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In this case, the fuel cost function (f3) takes into account the valve point effect in the 

thermal power plant. 
min

gP  (MW) is the minimum power of the generator g;
 
dg and 

eg are coefficients for valve point effect. Ploss are neglected. 
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Function f4 represents the fuel cost function, which accounts for both power loss 

and the valve-point effect. The constraint on generator power output remains 

consistent across all four optimization processes and is defined as follows: 

min max
g g gP P P                                                                                 (5) 

where,
min
gP and

max
gP are the minimum and maximum power of generator g, 

respectively. During the optimization process the power balance in the system must 

be satisfied, i.e.: 

0g D lossg G
P P P


− − =                                                                 (6) 

where, PD is the total power of the consumer. Coefficients of fuel cost, emission and 

B-loss matrices are taken in this paper from [9]. The algorithms are implemented in 

MATLAB R2017a computational environment and run on 1.3 GHz, with 8.0 GB 

RAM. The best results of the simulations are obtained after 30 runs. The coefficients 

of the algorithms are shown in Table 1. 

 

FA MSA PSOGSA and PSOCGSA PSO 

N tmax    N tmax Nc N tmax G0  C1 C2 N tmax C1 C2 

 50  200 0.25  0.20 1  50  200   6  50  200  1  20  0.5  1.5  50  200  0.5  1.5 

Table 1. 

Coefficients of the algorithms applied to the test system 


min

  
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The testing results indicate that the optimal fuel cost values are either identical or 

highly similar across all five algorithms. However, other performance metrics 

exhibit varying degrees of similarity or significant differences among the tested 

algorithms. In the next section, algorithms are ranked based on multiple evaluation 

metrics, overused functions of Economic dispatch problem. 

3 COPRAS method in Multi-Criteria Decision-

Making 

The Complex Proportional Assessment (COPRAS) method is a widely used multi-

criteria decision-making (MCDM) approach that facilitates the ranking and 

selecting alternatives based on multiple conflicting criteria. Introduced by 

Zavadskas, Kaklauskas, and Sarka in 1994, COPRAS is particularly effective in 

situations where decision-makers must evaluate alternatives by considering both 

beneficial and non-beneficial criteria while maintaining proportionality between the 

alternatives [10], [11]. This method follows a systematic process for ranking and 

evaluating options based on their relative importance and utility. By analysing best-

case and worst-case scenarios, COPRAS ensures a well-balanced decision-making 

approach that effectively accounts for trade-offs between competing criteria. Key 

characteristics of the COPRAS method include its compensatory nature, which 

allows weaker criteria to be offset by stronger ones, its ability to maintain 

independence among attributes, and its capability to convert qualitative attributes 

into quantitative measures, making it a versatile tool for multi-criteria decision-

making applications [12]. 

Step 1. Formulation of Decision Matrix 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

ij

m m mn

x x x

x x x
X x

x x x

 
 
  = =   
 
 

                                                                     (7) 

Where xij is the estimated value of the i-th in relation to the j-th criterion, m is the 

number of alternatives and n is the number criteria. 

Step 2. The Normalized Decision Matrix. Normalization of the initial decision 

matrix using the linear normalization procedure. The equation (8) is used for 

normalization in the COPRAS method: 
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Step 3. The Weighted Normalized Decision Matrix. Equation (9) is used to 

calculates the values for the weighted normalized decision matrix. 

1, ... , ; 1, ... ,ij ij jD x r w i m j n = =  = =                                   (9) 

Where wj is the normalized value of the i-th alternative in relation to the j-th criterion 

and wj is the weight or importance of the j-th criterion. The sum of weighted 

normalized values for each criterion is always equal to the value of that criterion: 

1
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Step 4. The Maximizing and Minimizing Indexes 

The indices for maximising and minimising each attribute are determined by 

whether the attributes are negative or positive, utilizing equations (11) and (12): 
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Where y+ij and y-ij are weighted normalized values for positive or negative criteria, 

respectively. 

Step 5. The relative significance value. Determining the relative importance of each 

alternative. Relative weight Qi for the i-th alternative is calculated using the 

equation (13) or equation (14): 
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Step 6. Final Ranking of Alternatives. The alternatives are arranged in descending 

order according to their relative importance values, with the highest final value 

ranked first. 

The COPRAS method has been extensively applied across various fields due to its 

efficiency in handling multi-criteria decision-making problems. It has been widely 

utilized in engineering optimization [4], transportation planning [13], energy sector 
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analysis [14], supply chain management [15], in risk assessment [16], [17], [18], 

investment project selection [19], manufacturing environments [20], logistics 

performance evaluation [21], public health and occupational safety [22], aerospace 

engineering [23]. These diverse applications underscore the robustness and 

adaptability of the COPRAS method, making it a powerful tool for tackling complex 

decision-making challenges across multiple industries. Compared to other MCDM 

methods, such as TOPSIS and VIKOR, COPRAS offers a straightforward 

computational process and ensures that the final ranking reflects the relative 

importance of each criterion while maintaining consistency in decision-making 

[14]. Therefore, in this research COPRAS method is used to rank algorithms 

according to different performance measures to solve mentioned Economic dispatch 

problem variants. 

4 Results of ranking algorithms 

Based on the findings from the previous research phase, the five algorithms tested, 

MSA, FA, PSO, PSOGSA, and PSOCGSA, were ranked using the COPRAS 

method. The initial decision matrix, presented in Table 2, displays key performance 

metrics for each algorithm, including the best (minimum) obtained values, mean 

values, standard deviation, error rate, convergence rate, and computation time. 

After performing the linear normalization explained in step 2 equation (8) and 

weighting the normalized matrix equation (9), the weight-normalized decision 

matrix is obtained (Table 3). 

 
Criteria

→ 

Alternativ

es↓ 

Best (B) min Standard Deviation (SD) min 

B (f1) B (f2) B (f3) B (f4) f1 (SD) 
f2  

(SD) 
f3  (SD) f4  (SD) 

MSA 
600.1114
0866 

605.9983
6998 

 

631.34826

554 

 

635.82880

914 

 

4.42645122E

-06 

 

6.81784E

-06 

 

7.82397306

5 

 

6.6273366

99 

FA 
600.1114

0820 

605.9983

6950 

 
631.34937

828 

 
635.82395

070 

 
6.103360307

E-04 

 
0.030611

058 

 
4.61553033

3 

 
0.2558257

79 

PSO 
600.1114

0819 

605.9983

6946 

 
631.90736

059 

 
635.90446

527 

 
6.893239936

E+00 

 
6.858534

642 

 
6.37253519

6 

 
8.4013972

07 

PSOGSA 
600.1114

0819 

605.9983

6946 

 
631.33121

085 

 
635.82011

047 

 
3.468910298

E-13 

 
11.12599

965 

 
6.61759886

4 

 
15.576524

660 

PSOCGS

A 

600.1114

0819 

605.9983

6946 

 

631.33122
939 

 

635.82041
383 

 

2.701100444
E-08 

 

7.285294
731 

 

4.94591387
2 

 

8.7227920
25 

Criteria

→ 

Mean value (Mv) min Error rate (Er) min 

f1 (Mv) f2 (Mv) f3 (Mv) f4 (Mv) f1 (Er) f2 (Er) f3 (Er) f4 (Er) 
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Alternati

ves↓        

MSA 
600.1114

1342 

 

605.99837
820 

 

639.59170
422 

 

639.62799
639 

8.713818

E-07 

 

1.44223E
-06 

 

1.30851160
5 

 

0.5988935
96 

FA 
600.1115
3488 

 

606.00395

852 

 

633.36741

788 

 

636.03929

498 

2.111228
E-05 

 

0.000922

291 

 

0.32261203

8 

 

0.0344727

23 

PSO 
606.0607

7310 

 

611.09555

167 

 

642.59481

029 

 

648.73761

871 

9.913767

E-01 

 

0.841121

44 

 

1.78419039

4 

 

2.0316293

91 

PSOGSA 
600.1114
0819 

 
616.65200

830 

 
636.37489

520 

 
661.44054

499 

5.683287
E-14 

 
1.758030

943 

 
0.79898321

2 

 
4.0295099

34 

PSOCGS

A 

600.1114

0823 

 
607.90362

553 

 
633.28208

453 

 
637.91709

308 

7.313727

E-09 

 
0.314399

539 

 
0.30909561

1 

 
0.3298075

31 

Criteria

→ 

Alternati

ves↓         

Computation time (Ct) min Convergence (C) min 

f1 (Ct) f2 (Ct) f3 (Ct) f4 (Ct) f1 (C) f2 (C) f3 (C) f4 (C) 

MSA 
 
0.7475703

4 

 
3.5795576

57 

1.836055

390 

 
4.9703006

97 

106 97 750 471 

FA 
 
1.7957458

5 

 
3.9314304

43 

4.551615

297 

 
6.5068885

97 

66 68 252 334 

PSO 

 

1.0826305

0 

 

3.1624637

43 

1.304519

950 

 

3.0545872

27 

43 38 98 156 

PSOGSA  0.7845  1.6958 1.9987  1.5170 18 28 71 85 

PSOCGS
A 

 0.7856  2.3182 2.0949  4.7472 20 17 129 166 

Table 2 

The initial matrix for ranking tested algorithms 

 

 

Criteria→ 

Alternative

s ↓ 

Best (B) Standard Deviation (SD) 

B 

(f1) 
B (f2) B (f3) B (f4) f1 (SD) 

f2  

(SD) 

f3  

(SD) 

f4  

(SD) 

MSA 
0.00

83 

0.008

3 

0.0083 0.0083 
0.0000 

0.001

1 

0.010

7 
0.0070 

FA 
0.00

83 

0.008

3 

0.0083 0.0083 
0.0000 

0.000

0 

0.006

3 
0.0003 

PSO 
0.00

83 

0.008

3 

0.0083 0.0083 
0.0417 

0.011

0 

0.008

7 
0.0088 

PSOGSA 
0.00

83 

0.008

3 

0.0083 0.0083 
0.0000 

0.017

8 

0.009

1 
0.0164 

PSOCGS

A 

0.00

83 

0.008

3 

0.0083 0.0083 
0.0000 

0.011

7 

0.006

8 
0.0092 

Criteria→ 

Alternativ

es↓        

Mean value (Mv) Error rate (Er) 

f1 

(Mv) 

f2 

(Mv) 
f3 (Mv) f4 (Mv) f1 (Er) f2 (Er) 

f3 

(Er) 
f4 (Er) 
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MSA 
0.00

83 

0.008

3 
0.0084 0.0083 0.0000 

0.002

0 

0.012

1 
0.0036 

FA 
0.00

83 

0.008

3 
0.0083 0.0082 0.0000 

0.000

0 

0.003

0 
0.0002 

PSO 
0.00

84 

0.008

4 
0.0084 0.0084 0.0417 

0.011

5 

0.016

4 
0.0121 

PSOGSA 
0.00

83 

0.008

4 
0.0083 0.0085 0.0000 

0.023

9 

0.007

4 
0.0239 

PSOCGS

A 

0.00

83 

0.008

3 
0.0083 0.0082 0.0000 

0.004

3 

0.002

8 
0.0020 

Criteria→ 

Alternativ

es↓         

Computation time (Ct) Convergence (C) 

 
f1 

(Ct) 

f2 

(Ct) 
f3 (Ct) f4 (Ct) f1 (C) f2 (C) f3 (C) f4 (C) 

MSA 
0.00

60 

0.010

2 
0.0065 0.0100 0.0175 0.0163 

0.024

0 
0.0162 

FA 
0.01

44 

0.011

2 
0.0161 0.0130 0.0109 0.0114 

0.008

1 
0.0115 

PSO 
0.00

87 

0.009

0 
0.0046 0.0061 0.0071 0.0064 

0.003

1 
0.0054 

PSOGSA 
0.00

63 

0.004

8 
0.0071 0.0030 0.0030 0.0047 

0.002

3 
0.0029 

PSOCGS

A 

0.00

63 

0.006

6 
0.0074 0.0095 0.0033 0.0029 

0.004

1 
0.0057 

Тable 3 

Weight-normalized decision matrix 

All criteria must be minimised. Employing equation (12) in step 4, the resulting 

matrix is obtained, which reveals the calculated total of the cost criteria. The 

obtained results from this step is present in Table 4. 

 

Alternatives S-i (min) 

MSA 0.2095 

FA 0.1728 

PSO 0.2691 

PSOGSA 0.1996 

PSOCGSA 0.1490 

Таble 4. 

Presentation of gained values S-i 

 Applying equation (13), a matrix with the following values is obtained based on 

which alternatives are ranked. The obtained results is present in  Table 5. 
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Alternatives Qi Rank 

MSA 0.1839 4 

FA 0.2226 2 

PSO 0.1429 5 

PSOGSA 0.1928 3 

PSOCGSA 0.2581 1 

Таble 5. 

Ranking list of algorithm using COPRAS mеthod 

The best-ranked algorithm applied in four different functions according to the best 

results, standard deviation, computation time and convergence is PSOCGSA, 

followed by the FA, PSOGSA, MSA and PSO algorithm.  

5 Validation of results using EDAS method 

To further validate the results obtained through the COPRAS method and ensure 

the accuracy of the ranking, the EDAS (Evaluation Based on Distance from Average 

Solution) method was employed [24]. EDAS is a multi-criteria decision-making 

technique that evaluates alternatives based on their distances from an ideal or 

average solution [25], providing a complementary perspective to the COPRAS 

method. In this approach, the alternatives are assessed by calculating their positive 

(Si
+) and negative (Si

-) distances from the average solution, which represents a 

reference point in the decision space. These distances are then used to rank the 

alternatives, with the smallest positive distance indicating the best-performing 

alternative [26]. Table 6 displays the final rankings of the analyzed algorithms based 

on the EDAS method. 

 

Alternatives Si
+ Si

- Si Rank 

MSA 0.7107 0.4184 0.565 4 

FA 1 0.6513 0.826 2 

PSO 0.3018 0 0.151 5 

PSOGSA 0.8770 0.4234 0.650 3 

PSOCGSA 0.9836 0.9378 0.961 1 

Table 6 

Ranking list of algorithm using EDAS method 



 213 

The results obtained by the ranked algorithms using the EDAS method showed 

consistency in the ranks obtained for different performance measures compared to 

the COPRAS method results. Namely, the application of the EDAS method 

indicates that the best-ranked algorithm is PSOCGSA (according to the best results, 

standard deviation, computation time, and convergence), which points out that the 

validity of the obtained results was achieved. 

The application of the EDAS method allowed for the cross-validation of the results 

derived from COPRAS method, providing additional confidence in the robustness 

and consistency of the obtained ranking. By comparing the rankings from both 

methods, a more comprehensive and reliable assessment of the alternatives was 

achieved, enhancing the overall decision-making process.  

 

Conclusion 

This study applied the COPRAS multi-criteria decision-making method to rank and 

evaluate metaheuristic algorithms for solving the multi-objective Economic 

dispatch problem. The ranking criteria were based on multiple performance 

measures, assessing each algorithm’s effectiveness in addressing different 

subproblems of the optimization task. By integrating these criteria, the PSOCGSA 

algorithm was identified as the most suitable solution for the Economic dispatch 

problem. The COPRAS method facilitated a structured and systematic comparison, 

ensuring that the final ranking considered the accuracy and robustness of the 

algorithms and their computational efficiency and stability across various problem 

variants. The EDAS method was employed to validate these findings, confirming 

our ranking procedure's reliability. The results of this study demonstrate that the 

proposed methodology is effective and can be extended to other optimization 

problems requiring the selection of the most appropriate metaheuristic algorithm. 
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